
CMPE 300 - Analysis of Algorithms

Fall 2015

Assignment 1 Solutions

Due: November 11, 17:00

Question 1

a) Write an algorithm in pseudocode for computing the k’th power of a square matrix of
dimension n × n. The runtime of your algorithm should be o(kn3). Perform an exact
analysis and express the time complexity in big O notation.

Solution:

The naive algorithm for calculating k’th power of a matrix is to perform k − 1 matrix
multiplications. The standard matrix multiplication algorithm for two square matrices
of dimension n takes O(n3) time. Hence, we should find another way for computing the
k’th power since the naive approach does not yield an o(kn3) algorithm.

We will use the method of exponentiation by squaring to reduce the number of matrix
multiplications.

Function: MatrixPower(A, k)

Input: A (n× n dimensional matrix)
k (a positive integer)

Output: M (k’th power of A)

if k=1 then
M ← A

else
if n mod 2 = 0 then

M ← MatrixPower(A ·A, n/2)
else

M ← A · MatrixPower(A ·A, (n− 1)/2)
end if

end if
return M

end MatrixPower

1

Matrix multiplication algorithm is the classical O(n3) algorithm. Let us analyze the
complexity of the MatrixPower algorithm. We can choose matrix multiplication as the
basic operation.

Since the algorithm is recursive, we will write a recursion to find its complexity. Let
f(k, n) denote the complexity of MatrixPower and t(n) denote the complexity of matrix
multiplication.

Best case occurs when k = 2n.

f(1, n) = 0

f(k, n) = f(k/2, n) + t(n)

= f(k/4, n) + 2t(n)

= f(k/8, n) + 3t(n)

· · ·
= f(1, n) + log2 k · t(n)

∈ O(log k · n3)

Worst case occurs when k = 2n − 1

f(1, n) = 0

f(k, n) = f(k/2, n) + 2t(n)

= f(k/4, n) + 4t(n)

= f(k/8, n) + 6t(n)

· · ·
= f(1, n) + 2 log2 k · t(n)

∈ O(log k · n3)

We conclude that f(k, n) ∈ O(log k · n3). Note that f(k, n) ∈ o(k · n3).

b) Let A and B be integer square matrices of dimension (n + 2) × (n + 2) which have the
following form: 1 a c

0 In b
0 0 1

where a is an n dimensional row vector, b is an n dimensional column vector, c ∈ Z, and
In is the identity matrix of dimension n. An example for dimension 7 can be given as
follows:

1 3 4 0 1 −2 5
0 1 0 0 0 0 −3
0 0 1 0 0 0 5
0 0 0 1 0 0 1
0 0 0 0 1 0 4
0 0 0 0 0 1 3
0 0 0 0 0 0 1

2

Describe a method for multiplying A and B which requires O(n) time.

Solution: When two matrices of the given form are multiplied, the resulting matrix has
the following form. 1 a1 c1

0 In b1

0 0 1

 ·
 1 a2 c2

0 In b2

0 0 1

 =

 1 a1 + a2 c1 + a1 · b2 + c2
0 In b1 + b2

0 0 1

Therefore it is enough to compute a1 + a2, a1 · b2 + c2 and b1 + b2.

Adding two vectors of dimension n requires n additions. Dot product of two vectors
requires n multiplications and n−1 additions. Adding three scalars requires 2 additions.
In total, we need to perform 3n+ 1 basic operations which requires O(n) time.

Question 2

Consider the given function f(n) and determine whether the following cases are true or false.
Justify your answers formally.

f(n) = n2 log n+ n3
n∑

i=1

1

i
+ n3

n∑
i=0

1

2i

a) f(n) ∈ O(n4)

b) f(n) ∈ θ(n4)

c) f(n) ∈ Ω(n3 log n)

d) f(n) ∈ o(n4 log n)

Solution: Let us analyze the given function f(n).∑n
i=1

1
i is the harmonic series and evaluates to ∼ log n.∑n

i=0
1
2i is the geometric series and evaluates to 1−(1/2)n+1

1−(1/2) = 2− (1/2)n.

Therefore, f(n) = n2 log n+ n3 log n+ n3(2− (1/2)n)

a) f(n) ∈ O(n4) True

limn→∞
f(n)
n4 = 0

By Ratio Limit Theorem, f(n) ∈ o(g(n))⇒ f(n) ∈ O(g(n))

3

b) f(n) ∈ θ(n4) False

limn→∞
f(n)
n4 = 0 implies that f(n) /∈ Θ(n4) by Ratio Limit Theorem.

c) f(n) ∈ Ω(n3 log n) True

Let n0 = 1 and c = 1. cn3 log n ≤ f(n) for all n ≥ n0. The assertion is true by the
definition of Ω.

d) f(n) ∈ o(n4 log n) True

limn→∞
f(n)

n4 logn = 0 implies that f(n) ∈ ø(n4 log n) by Ratio Limit Theorem.

4

