CMPE 300 - Analysis of Algorithms Fall 2015 Assignment 1 Solutions

Due: November 11, 17:00

Question 1

a) Write an algorithm in pseudocode for computing the k'th power of a square matrix of dimension $n \times n$. The runtime of your algorithm should be $o(kn^3)$. Perform an exact analysis and express the time complexity in big O notation.

Solution:

The naive algorithm for calculating k'th power of a matrix is to perform k-1 matrix multiplications. The standard matrix multiplication algorithm for two square matrices of dimension n takes $O(n^3)$ time. Hence, we should find another way for computing the k'th power since the naive approach does not yield an $o(kn^3)$ algorithm.

We will use the method of exponentiation by squaring to reduce the number of matrix multiplications.

```
Function: MatrixPower(A, k)

Input: A (n \times n \text{ dimensional matrix})

k (a positive integer)

Output: M (k'\text{th power of } A)

if k=1 then

M \leftarrow A

else

if n \mod 2 = 0 then

M \leftarrow \text{MatrixPower}(A \cdot A, n/2)

else

M \leftarrow A \cdot \text{MatrixPower}(A \cdot A, (n-1)/2)

end if

return M

end MatrixPower
```

Matrix multiplication algorithm is the classical $O(n^3)$ algorithm. Let us analyze the complexity of the MatrixPower algorithm. We can choose matrix multiplication as the basic operation.

Since the algorithm is recursive, we will write a recursion to find its complexity. Let f(k, n) denote the complexity of MatrixPower and t(n) denote the complexity of matrix multiplication.

Best case occurs when $k = 2^n$.

$$\begin{split} f(1,n) &= 0\\ f(k,n) &= f(k/2,n) + t(n)\\ &= f(k/4,n) + 2t(n)\\ &= f(k/8,n) + 3t(n)\\ & \cdots\\ &= f(1,n) + \log_2 k \cdot t(n)\\ &\in O(\log k \cdot n^3) \end{split}$$

Worst case occurs when $k = 2^n - 1$

$$f(1,n) = 0$$

$$f(k,n) = f(k/2,n) + 2t(n)$$

$$= f(k/4,n) + 4t(n)$$

$$= f(k/8,n) + 6t(n)$$

...

$$= f(1,n) + 2\log_2 k \cdot t(n)$$

$$\in O(\log k \cdot n^3)$$

We conclude that $f(k,n) \in O(\log k \cdot n^3)$. Note that $f(k,n) \in o(k \cdot n^3)$.

b) Let A and B be integer square matrices of dimension $(n+2) \times (n+2)$ which have the following form:

$$\begin{bmatrix} 1 & \mathbf{a} & c \\ 0 & I_n & \mathbf{b} \\ 0 & 0 & 1 \end{bmatrix}$$

where **a** is an *n* dimensional row vector, **b** is an *n* dimensional column vector, $c \in \mathbb{Z}$, and I_n is the identity matrix of dimension *n*. An example for dimension 7 can be given as follows:

1	3		0	1	-2	5
0	1	0	0		0	-3
0	0	1	0	0	0	5
0	0	0	1	0	0	$ \begin{array}{r} 3 \\ -3 \\ 5 \\ 1 \\ 4 \\ 3 \end{array} $
0	0	0	0	1	0	4
0	0	0	0	0	1	3
0	0	0	0	0	0	1

Describe a method for multiplying A and B which requires O(n) time.

Solution: When two matrices of the given form are multiplied, the resulting matrix has the following form.

$$\begin{bmatrix} 1 & \mathbf{a}_1 & c_1 \\ 0 & I_n & \mathbf{b}_1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & \mathbf{a}_2 & c_2 \\ 0 & I_n & \mathbf{b}_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{a}_1 + \mathbf{a}_2 & c_1 + \mathbf{a}_1 \cdot \mathbf{b}_2 + c_2 \\ 0 & I_n & \mathbf{b}_1 + \mathbf{b}_2 \\ 0 & 0 & 1 \end{bmatrix}$$

Therefore it is enough to compute $\mathbf{a}_1 + \mathbf{a}_2$, $\mathbf{a}_1 \cdot \mathbf{b}_2 + c_2$ and $\mathbf{b}_1 + \mathbf{b}_2$.

Adding two vectors of dimension n requires n additions. Dot product of two vectors requires n multiplications and n-1 additions. Adding three scalars requires 2 additions. In total, we need to perform 3n + 1 basic operations which requires O(n) time.

Question 2

Consider the given function f(n) and determine whether the following cases are true or false. Justify your answers formally.

$$f(n) = n^2 \log n + n^3 \sum_{i=1}^n \frac{1}{i} + n^3 \sum_{i=0}^n \frac{1}{2^i}$$

- a) $f(n) \in O(n^4)$
- b) $f(n) \in \theta(n^4)$
- c) $f(n) \in \Omega(n^3 \log n)$
- d) $f(n) \in o(n^4 \log n)$

Solution: Let us analyze the given function f(n).

- $\sum_{i=1}^{n} \frac{1}{i} \text{ is the harmonic series and evaluates to} \sim \log n.$ $\sum_{i=0}^{n} \frac{1}{2^{i}} \text{ is the geometric series and evaluates to } \frac{1-(1/2)^{n+1}}{1-(1/2)} = 2 - (1/2)^{n}.$ Therefore, $f(n) = n^2 \log n + n^3 \log n + n^3 (2 - (1/2)^n)$
- a) $f(n) \in O(n^4)$ True

 $\lim_{n \to \infty} \frac{f(n)}{n^4} = 0$

By Ratio Limit Theorem, $f(n) \in o(g(n)) \Rightarrow f(n) \in O(g(n))$

b) $f(n) \in \theta(n^4)$ False

 $\lim_{n\to\infty}\frac{f(n)}{n^4}=0$ implies that $f(n)\notin\Theta(n^4)$ by Ratio Limit Theorem.

c) $f(n) \in \Omega(n^3 \log n)$ True

Let $n_0 = 1$ and c = 1. $cn^3 \log n \le f(n)$ for all $n \ge n_0$. The assertion is true by the definition of Ω .

d) $f(n) \in o(n^4 \log n)$ True

 $\lim_{n\to\infty} \frac{f(n)}{n^4 \log n} = 0$ implies that $f(n) \in \phi(n^4 \log n)$ by Ratio Limit Theorem.