CMPE 300 - Analysis of Algorithms Fall 2015 Assignment 1

Due: November 11, 17:00

Question 1

- a) Write an algorithm in pseudocode for computing the k'th power of a square matrix of dimension $n \times n$. The runtime of your algorithm should be $o(kn^3)$. Perform an exact analysis and express the time complexity in big O notation.
- b) Let A and B be integer square matrices of dimension $(n + 2) \times (n + 2)$ which have the following form:

$$\left[\begin{array}{rrrr} 1 & \mathbf{a} & c \\ 0 & I_n & \mathbf{b} \\ 0 & 0 & 1 \end{array}\right]$$

where **a** is an *n* dimensional row vector, **b** is an *n* dimensional column vector, $c \in \mathbb{Z}$, and I_n is the identity matrix of dimension *n*. An example for dimension 7 can be given as follows:

1	3	4	0	1	-2	5	
0	1	0	0	0	0	-3	
0	0	1	0	0	0	5	
0	0	0	1	0	0	1	
0	0	0	0	1	0	4	
0	0	0	0	0	1	3	
0	0	0	0	0	0	1	

Describe a method for multiplying A and B which requires O(n) time.

Question 2

Consider the given function f(n) and determine whether the following cases are true or false. Justify your answers formally.

$$f(n) = n^2 \log n + n^3 \sum_{i=1}^n \frac{1}{i} + n^3 \sum_{i=0}^n \frac{1}{2^i}$$

- a) $f(n) \in O(n^4)$
- b) $f(n) \in \theta(n^4)$
- c) $f(n) \in \Omega(n^3 \log n)$
- d) $f(n) \in o(n^4 \log n)$