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Abstract—Research has shown that the memory load/store
instructions consume an important part in execution time and
energy consumption. Extracting available parallelism at different
granularity has been an important approach for designing next
generation highly parallel systems. In this work, we present
MIPT, an architecture exploration framework that leverages
instruction parallelism of memory and ALU operations from a
sequential algorithm’s execution trace. MIPT heuristics recom-
mend memory port sizes and issue slot sizes for memory and ALU
operations. Its custom simulator simulates and evaluates the rec-
ommended parallel version of the execution trace for measuring
performance improvements versus dual port memory. MIPT’s
architecture exploration criteria is to improve performance by
utilizing systems with multi-port memories and multi-issue ALUs.
There exists design exploration tools such as Multi2Sim and
Trimaran. These simulators offer customization of multi-port
memory architectures but designers’ initial starting points are
usually unclear. Thus, MIPT can suggest initial starting point for
customization in those design exploration systems. In addition,
given same application with two different implementations, it is
possible to compare their execution time by the MIPT simulator.

Keywords—Instruction Level Parallelism; Genetic Algorithm;
Optimization; Measurements

I. INTRODUCTION

Today, there is significant research for developing new plat-
forms for large scale concurrent and distributed systems. Most
of the research aims towards increasing scalability by raising
the abstraction levels and providing simplicity to develop and
maintain code. Hence, the single computing block (node, actor
etc.) performance of these large scale systems has remained
inefficient due to poor system level design decisions and/or
unoptimized code [1]. In addition, different platforms have
different compute node characteristics, such as shared threads
or dedicated single thread per node.

Building more powerful compute units has been suggested
in [2]–[4] for increasing scalability and reducing node inef-

ficiency problems in future large scale processing systems.
A recent publication [5] suggests more aggressive use of in-
struction extensible processors at compute nodes of large scale
processing systems in order to tailor application for improved
performance and efficiency. Authors target three different parts
of the processor architecture: the instruction decoders, register
files and the data paths. For memory intensive applications,
authors consider reduction of load/store operations as major
contributors to performance improvements. They have shown
that overall performance have improved by reduction of data
load/store by using multi-port register file. In addition, short
lived data was stored in custom buffers instead of register files
which prevent unnecessary register file accesses. This short
lived data also decrease space in the register file for non-
intermediate data and causes additional memory load/stores,
thus performance is decreased. However, it is known that
increasing port numbers affects area dramatically which affects
power consumption negatively [6], [7]. This issue has become
more important with the advent of processor architectures with
multi-port memories [8], [9].

In this paper, we present the architecture and underlying
heuristics of MIPT (Million Memory Instructions Per Trace)
framework which has built its foundations from the aforemen-
tioned discussion. It processes sequential algorithm execution
traces for architecture exploration and extracts parallelism for
memory and Arithmetic Logic Unit (ALU) operations. MIPT
heuristics explores the design space and decides the number
of read/write ports for memory operations and the number of
issue slots for ALU operations. In addition, it recommends a
new schedule that exploits the suggested port and issue slot
number. MIPT aims to improve instruction level parallelism
(ILP) by first analyzing memory load/store instruction traces
and true register data dependenciesa between memory instruc-

aTrue register data dependency is defined as dependency between registers
due to data flow, reading a value of register after writing it.



tions. Our analysis algorithm extracts maximum and average
instruction level parallelism. Multi-port memory number and
issue slot sizes are determined by maximum parallelism. Our
recommendation algorithm explores design space and reduces
maximum port usage and issue slot size. Hence, we gain
significantly from resource usage while keeping the same
performance. This is achieved by reordering some instructions
to different access steps, thus lowering maximum parallelism.
Nevertheless, we try to preserve average parallelism, which is
defined as the average number of instructions per access step.

Our primary contributions are:

• A rapid analysis method that extracts memory level
parallelism of memory instructions and instruction level
parallelism of ALU operations. The method is based on
bundling load/store instructions together without creating
any data hazards. This lowers the number of accesses to
memory and exploits multi-port memory structures. After
memory operations are bundled, arithmetic operations are
bundled and scheduled in the same way.

• An evolutionary algorithm that reduces maximum mem-
ory port usage which gains significantly from resource
usage but keeping the similar degree of parallelism and
performance. This is achieved by re-scheduling some
instructions, thus improving average parallelism without
increasing the execution time.

• A custom simulator that evaluates the performance of the
recommended architecture. In addition, MIPT simulates
and reports the execution time given algorithm’s execu-
tion trace, read/write port and ALU slots size.

The main practical application and usefulness of MIPT frame-
work is providing a starting point for migrating sequential
applications to multiprocessing systems with multi-port mem-
ories. Given a real sequential application, MIPT finds out how
it can be parallelized. MIPT framework does not implement
any hardware architecture. MIPT analyzes any sequential
application, finds average and maximum parallelism, searches
the design space and recommends designer memory port and
issue slot size. There exists design exploration tools such as
Multi2Sim and Trimaran [10], [11]. These simulators offer
customization of multi-port memory architectures but require
a huge execution time for exploring the different configu-
rations. Thus, our tool can suggest initial starting point for
customization in those design exploration systems. In addition,
given same application with two different implementations, it
is possible to compare their execution time by our custom
simulator. It is known that coding style, compiler optimizations
and different compilers generate different binaries. Conversely,
given an algorithm, its input data, read/write port size and
multi-issue ALU structure, it can simulate and suggest a
schedule which minimizes execution time

The rest of this paper is organized as follows. We discuss
related work in literature and a use case where a framework
like ours could be used in Section II. Section III explains the
architecture and the stages of the framework. Experimental

results are presented in Section IV. Section V includes our
discussion of potential MIPT use cases and our conclusion.

II. RELATED WORK

We have identified three areas where parallelism is ex-
ploited, thus relate to our work:

Compilation Techniques Software compilation techniques
based on traces and profiles have been studied widely [12] [13]
[14] [15] [16]. Parallelizing compilers for VLIW processors
provide ILP by formatting more than one operations as one
instruction at compile time. VLIW compiler prevents imple-
menting dependency checking, structural hazard checking and
complex instruction dispatch hardware. All these are figured
out by the compiler. Software pipelining, trace scheduling,
predicated execution, hierarchical reduction and speculative
execution have been major compiler optimizations. Trace
scheduling [12] required additional code when operations are
reordered. Speculative execution [13] helps the reduction of
compensation code and moves instructions past branches. The
speculatively executed code shouldn’t produce any stalls to
the processor pipeline when it is not needed. Speculative
execution can be implemented as hardware or software. Soft-
ware pipelining [14] [16] aims at compacting loop kernels by
minimizing initiation intervals. Predicated execution [15] aims
to convert branches to basic blocks with hardware defined
predicates on certain instructions. The predicated execution
simplifies compilation due to reducing branch code and avoid
branch prediction but predicated instruction are always fetched
whether or not they are executed. Hierarchical reduction [14]
is the method to simplify scheduling process by compacting
and representing scheduled program components as a single
component. This component is consisted of having the ag-
gregate resource and scheduling constraints of the scheduled
program components. Approaches that extract ILP parallelism
that do not work with execution traces require dependency
analysis methods such as Omega test [17], GCD test [18] and
points-to-analysis [19] which are computationally expensive.
MIPT heuristics analyze execution traces where all the address
and register dependencies can be checked via real memory
addresses and registers generated in the traces by only iterating
over the control and data flow graph (CDFG). Therefore, all
of the data dependency and structural hazards can be solved
allowing code movement above branches if branch is known
to be not taken under provided input data. This analysis is
explained in the next section.

Parallelism extraction and classification: Parallelism ex-
traction/classification from applications are used in applica-
tion specific processor design and measurements of software
metrics [20] [21]. Work in [20] presents methods for mea-
suring available instruction level and thread level parallelism
in different classes [22] of applications. Results show that
applications which are in the same class do not possess same
ILP and TLP parallelism. In addition, TLP and ILP do not
necessarily correlate. Applications with low ILP might have



high TLP. However, thread level analysis and task partitioning
depends highly on the underlying communication structures.
Our framework leverages instruction level parallelism from
sequential algorithms. It does not support any thread level
parallelism extraction. Work in [21] introduces force based
parallelism on basic blocks to measure VLIW processor issue
width. Force based parallelism calculates possible availability
of operations in a time interval inside basic blocks by keeping
distribution graphs. Inter iteration dependence of loops are
broken with introduction of local variables. However, handling
of branches with distribution graphs are known to generate
poor results, because some paths can be favored probabilisti-
cally [12]. Conversely, MIPT processes execution traces and
no paths are favored. All existing paths in the given trace are
processed by our heuristics. Nevertheless, if a possible branch
path is not executed, it is not processed.

Cache replacement Policy and Scratchpad memory uti-
lization: Parallelization of memory instructions is a determin-
ing criteria when designing new cache replacement policies.
The work in [23] proposes a DRAM cache replacement policy
in out of order superscalar processors based on parallelism
cost and occurrence time of parallel memory operations.
Additionally, policy switch is possible based on hardware
based sampling. Similarly Data Trace Cache [24] inserts an
application specific cache with data locality improving cache
placement function. This improves hit rates in tree based
applications because conflict sets are allocated based on tree
levels. So memory is divided accordingly based on level
cardinality. Similarly, parallelism of memory instructions is
exploited for efficient allocation and utilization of scratchpad
memories (SPM) where it coexists with caches. The heuristics
developed in [25] the required scalar variable data size, access
frequencies and execution time of block sizes for maxi-
mizing scratchpad utilization. Similarly, our recommendation
algorithm can be used in allocation and utilization of SPM
in embedded systems domain. Based on the available port
requirements, our recommendation algorithm tries to extract
parallelism while lowering the number of accesses.

III. FRAMEWORK ARCHITECTURE

MIPT framework is divided into four stages as shown in
Figure 1. First step is profiling of the algorithm. Application
execution traces and data dependency graph are created from
given input data set and program binary. It is explained in
Section III-A. Second step of MIPT is the analysis of traces.
In the analysis section, analysis algorithm applies certain rules
to traces and the trace is reordered according to the rules.
Thus, a new reorder of traces, maximum parallelism and
average parallelism are generated. These results are fed to
recommendation algorithm which is the third step. The details
of the analysis algorithm is explained in Section III-B. The
recommendation algorithm aims to reduce maximum memory
port and issue slot size usage without decreasing average
parallelism.

Figure 1: MIPT process flow

Recommendation algorithm generates a new trace from the
analyzed trace. Generated multi-port multi-issue schedules are
simulated by MIPT’s custom simulator, which is explained
in Section III-E. Details of the recommendation algorithm is
explained in Section III-D. MIPT simulator generates reporting
metrics. Reporting metrics can be used for application explo-
ration and for comparing different applications. Section III-C
explains details the metrics.

A. Extracting and Formatting ExecutionTraces

Traces are generated from the application binary and given
input data set. Our trace generation program uses PIN [26]
library and x86 application binaries are compiled from C/C++
source files. The traces are stored in MIPT’s local database.

B. Parallelism Analysis from Execution Traces

Our analysis algorithm processes traces to extract paral-
lelism. To extract maximum parallelism, at the beginning, we
assume that there are a sufficient number of internal registers.
Register renaming is employed to prevent structural hazards.
The analysis is concerned with reordering and bundling in-
structions without breaking data dependencies. Hence, the
reordering logic is developed under certain rules.

• A set of n instructions M = {I1, I2....., In} with execu-
tion times {p1, p2, ...., pn}

• For Ii, Ij ∈M, As ∈ N, k ∈ N, and t ∈ {read,write};
the quadruple 〈Ii, As, t, k〉 denotes the kth occurrence
(access step) of Ii at address As which is a read or a
write instruction

• For all k > 0 such that:



1) 〈Ii, As, write, k+1〉 cannot start before or at the same
time with 〈Ij , As, write, k〉

2) 〈Ii, As, read, k+1〉 cannot start before or at the same
time with 〈Ij , As, write, k〉

3) 〈Ii, As, write, k+1〉 cannot start before or at the same
time with 〈Ij , As, read, k〉

The algorithm applies these rules to each load/store in-
struction. The instructions that satisfies these rules exploit
instruction parallelism without breaking data dependencies.
Rule 1, 2 and 3 are concerned with data hazards that may
happen when write and read to same address occur by different
instructions. The original order read from the trace files is not
changed in order to preserve data dependency. Rule 3 also
handles register data dependency. All the rules are checked in
a single pass of memory instructions. We define the reordering
problem as the reordering of instructions based on the given
rules and finding their execution start time.

Definition 1. A reordering α of all the given instructions M
and ∀k > 0;
Sα〈Ii,A,t,k〉 is the start time of 〈Ii, A, t, k〉 based on given
reordering rules.

Instructions with the same start times are parallel and are
scheduled at the same access time. This reordering extracts the
maximum parallelism which is defined as the highest number
of instructions in an access step. The algorithm 1 shows how
the reordering logic rules are applied to traces.

Input: Execution trace list and data dependency graph
Output: Reordered trace list, maximum parallelism and

average parallelism metric
1 initialize reordered trace list;
2 initialize access step pointer;
3 foreach instruction in the execution trace list do
4 check reordering rules against instructions which

access step pointer points to in reordered trace list;
5 if all the reordering rules are satisfied then
6 add instruction to reordered trace list at current

access step;
7 else
8 increment access step pointer;
9 add instruction to reordered trace list at the new

access step;
10 end
11 end

Algorithm 1: Analysis algorithm which applies the reorder-
ing rules to instructions and reorders a trace

The input of the algorithm are execution trace list and
data dependency graph. The algorithm iteratively compares
instructions and bundles them to access steps according to the
reordering logic. The output of the algorithm is the reordered
trace list, average parallelism and maximum parallelism ob-
tained from the trace.

C. MIPT Outputs

1) Reporting Metrics: MIPT prepares the following met-
rics: total number of registers used, memory port size, ALU
issue size, ALU issue structure, average parallelism, maxi-
mum parallelism, estimated execution cycle, estimated average
number of memory accesses (number of bundles), estimated
average non-memory accesses (number of ALU bundles).
These information yield explorations and comparisons be-
tween different algorithms or different versions of the same
algorithms.

2) Recommended Schedule Generation: MIPT produces
recommended schedule for the explored configuration. The
recommended schedule is the new reordered trace file. The
trace file can be explored through MIPT’s user interface.

D. An Evolutionary Algorithm for Reducing Maximum Paral-
lelism of Instructions

Maximum parallelism information extracted from analy-
sis algorithm is important because fastest execution requires
maximum parallelism. However, implementations based on
maximum parallelism will be inefficient in terms of area and
power consumption. The recommendation algorithm reduces
maximum port usage and issue slot size. Hence, we gain
significantly from resource usage while keeping the perfor-
mance attained at maximum parallelism. This is achieved by
reordering some instructions to different access steps, thus
lowering maximum parallelism. The algorithm is based on
a genetic algorithm (GA) in the literature [27]. We have
selected this method because the access step and instruction
encoding could be converted to GA chromosome encoding
without much effort. In addition, GA can solve multi solution
problems because of its population concept.

Recommendation algorithm extracts instruction level paral-
lelism. We have chosen to limit the issue size to the maximum
number of read/write port number of the multi-port memory.
For example, 3R 1W configuration is assumed to have less
than or equal to four issue slots. Overall execution time
can be improved by employing different parallelisms such as
thread level parallelism or multi-core parallelism in addition
to instruction level paralellism. Moreover, future 3D memory
chips such as work in [28] are multi-port, supports 4R 3W
configuration and are faster than current dual port DRAM
memories.

Solution Encoding: Solution encoding is designed as one
dimensional array. Each element of the array represents an
instruction. This array is called an individual and each in-
struction is a gene of the chromosome. For example, given
a chromosome (1,3,2,2), it is understood that there are four
instructions and first instruction executes at access step one,
second instruction is at step three and the rest is at step two.
A solution is feasible if it does not violate any dependency
rules explained in Section III-B.

Fitness Function: The fitness of a chromosome is identical



to the objective function value of the solution. The objective
is to minimize the maximum number of instructions in an
access step without increasing the total access steps and
creating any data hazards. All the reordering has to satisfy data
dependencies, otherwise the solution is considered infeasible.

Population Size: There is a trade-off in evolutionary algo-
rithm design. Large population sizes are slower than small
population sizes. However, small population sizes may not
generate enough diversity. In order to balance speed and diver-
sity we limit an instruction to be reordered in a predetermined
number of access steps. This is called access step window
(ASW). Let n being number of selected access steps which
have instructions more than initial average parallelism and
a being the highest number of access step window (ASW).
ASW is determined from dependency graph by checking inter
iteration dependencies in the loops if there are any. ASW is
bounded to 10 as the maximum value. Finally, The population
size is calculated as:
p(n, p) = max

{
2, d ln(n∗a)a e

}
∗ 10 ∗ log(n)

Initialization of the Population and Selecting Parents:
New orders and parent selection are generated randomly until
the population size is filled. Infeasible, solutions are not kept
in the population pool.

Generating New Members: A new member is generated by
crossover method from two parents that are chosen randomly
from the pool. The crossover happens from a randomly chosen
point of the genes. Nevertheless, the crossover point should
not violate data dependency. For example, two parents that
are selected from the pool are (1, 3, 2, 5, 4, 6) and (2, 2, 3, 6,
5, 4). If crossover index is three, offsprings become (1, 3, 2,
6, 5, 4) and (2, 2, 3, 5, 4, 6). The data dependency is checked
by using the reordering rules presented in Section III-B.

Mutation: We have opted out to apply mutation because of
no performance improvements.

Replacement: We admit a solution into the population, if it
is distinct and its fitness values is better than the worst fitness
value in the population. The worst members is then discarded.
This improves the average fitness value of the population
gradually while maintaining genetic diversity.

Termination The algorithm terminates after observing 10 ∗
log(n)

√
a successive iterations where the minimum of the

maximum parallelism of the solutions has not changed.

The algorithm 2 shows the steps of the procedure. The steps
of the algorithm applies the aforementioned features of GA.

E. Simulation of Generated Schedules

Generated schedules are simulated in order to estimate the
improvement in performance with calculated port and issue
slot size configurations. In our experiments for this work, we
have assumed that all the data resides in the cache. We have
obtained the operation costs from [29] and [30].

Input: Analyzed reordered trace list, data dependency
graph, maximum parallelism and average
parallelism

Output: Recommended trace list, recommended port and
issue slot size

1 choose initial population;
2 evaluate each chromosome’s fitness;
3 repeat
4 select two random chromosomes from population;
5 apply crossover operator;
6 foreach created new chromosome do
7 if chromosome is a feasible reordering then
8 evaluate chromosome’s fitness;
9 if population replacement criteria is met then

10 admit chromosome to population pool;
11 end
12 end
13 end
14 until terminating condition is met;

Algorithm 2: Recommendation algorithm which generates a
recommended schedule, lowers maximum parallelism while
preserving average parallelism

IV. EXPERIMENTAL RESULTS

We developed a custom simulator in order to simulate
reordered traces. As mentioned in Section III-A, we use PIN
API [26] for trace generation and CACTI [31] for memory
area estimations. We have experimented our approach with
string matching algorithms that are shown in Table I. Multi-
port multi-issue configurations are compared to dual port
single issue configuration which is taken as the baseline
configuration. The algorithms are modified from [32].

Input set contains one centimorgan DNA base pairs which is
approximately one million characters of text, and ten thousand
base pairs for patterns. The text alphabet size is four. Analysis,
recommendation algorithms and our custom simulator have
been implemented in Java and the results have been analyzed
using Octave. String matching algorithms are separated into
three classes based on the methods for searching strings.
These classes are bit parallelism, automata, and comparison.
Although, there exists different types of string matching algo-
rithms, all of them are highly memory intensive as shown in
Figure 2, thus data oriented. Control flow of string matching
algorithms are similar to sparse matrix multiplication which
are typical HPC applications [33], [34]. FSBNDMQ, FAOSO
and TVSBS have different implementations. In FSBNDMQ,
we change the q grams and the selected lookahead values.
For example, FSBNDMQ21 means the algorithm works with
2 grams and 1 lookahead value. In FAOSO, alignment numbers
vary. In TVSBS, we used different window sizes.

Our hardware setup is Intel 2.9 GHz Core i7 8GB DDR3
running 64-bit Unix OS. CACTI [31] memory area estimations
use following parameters: Block size: 64 bytes, Size: 1 GB,



Abbreviation Algorithm Type

FSBNDMQ
Forward Simplified Backward Nondeterministic

bit-parallel
DAWG Matching with q-grams

BMH-SBNDM
Backward Nondeterministic DAWG

bit-parallel
Matching with Horspool Shift

KBNDM
Factorized Backward Nondeterministic

bit-parallel
DAWG Matching

FAOSO Fast Average Optimal Shift Or bit-parallel

SEBOM Simplified Extended Backward Oracle Matching automata

FBOM Forward Backward Oracle Matching automata

SFBOM Simplified Forward Backward Oracle Matching automata

TVSBS
TVSBS: A Fast Exact Pattern Matching

comparison
Algorithm for Biological Sequences

FJS Franek Jennings Smyth String Matching comparison

GRASPM
Genomic Rapid Algorithm for

comparison
String Pattern Matching

TABLE I: String Matching Algorithms and abbreviations

technology: 32 nm, page size: 8192 bits, burst length: 8,
internal prefetch width: 8, input/output bus width: 64, oper-
ating temperature: 350 K and no selected optimizations. All
benchmarks have been compiled with GCC 4.8.2 applying
-O1 optimizations. We have opted for -O1 optimizations
because our experiments have shown that compilation with
-O2 has been equivalent to compilation with -O1. Function
inlining heuristics that are mostly used in -O2 has not made
any improvements. Similarly, compilation with -O3 has not
been not consistent. Each time we compile with -O3, we
obtain a different binary because some of heuristics are not
deterministic. For reproducibility of experimental work, we did
not prefer -O3. With given input set, one benchmark consumes
approximately one hour of processor time.

Experiments have shown that approaches which aim to
maximize parallelism by populating memory ports may not
yield best memory configuration, because increasing number
of port sizes impact memory area greatly as shown in Ana-
lyzed Maximum Parallelism column in Table II. Our recom-
mendation algorithm has managed to reduce area up to 599%.
Maximum parallelism extracted from SEBOM requires 22R
and 1W configuration. Recommendation algorithm reduces
this configuration to 3R and 1W without increasing average
parallelism. This reduction in port configuration causes 599%
reduction in required memory area.

There are significant differences in execution times between
different types of algorithms as shown in Table II. Bit-parallel
algorithms have fewer access steps than other types. More
than half of the instructions of all the algorithms are consisted
of memory instructions. However, there is not any relation
between access steps and memory instruction profiles. FSB-
NDMQ algorithm has the least average parallelism and least
ratio of average memory instructions among all algorithms.
FAOSO6 has the most maximum recommended parallelism
and TVSBS-W8 has the most average parallelism. However,

Figure 2: Memory instructions profile of string matching
algorithms

they both execute longer than FSBNDMQ.

The recommended average parallelism does not seem to
correlate with execution times. Recommended average par-
allelism value of FJS algorithm is 4.13 whereas FSBNDMQ
variations have 2.85 on average. Nevertheless, FJS has three
times more execution time than FSBNDMQ variations. Simi-
larly, Recommended maximum parallelism does not convey
any hint about the execution times. GRASPM has lower
recommended maximum parallelism than FAOSO6, but it
requires more access steps to complete. Algorithm types do
not have similar analyzed maximum parallelism. Analyzed
maximum parallelism of FSBNDMQ algorithm is read port
dominated whereas FAOSO algorithm is dominated by write
ports. Variations of the same algorithms can also have different
number of analyzed maximum parallelism. TVSBS-W4 has 22
read ports whereas TVSBS-W8 has 6 read ports.

All of the algorithms have shown execution time speed up
between 268% to 439 % in multi-port memory over dual-
port memory shown in Table II. Parallelizing only memory
instructions has produced speed ups. However, the maximum
speed up is obtained when both memory operations and ALU
operations are parallelized. In Table II, we report the best
execution times obtained after memory and ALU operations.

The types of the string matching algorithms also affect
parallelism and MP area consumption. Leveraging parallelism
of multi-port memory in automata based algorithms causes
1.51x increase in area over dual port memory configuration,
however the speed up obtained is 387% on average. Similarly,
our recommendation algorithm reduces memory area over our
analysis results between 213% and 599% shown in Table
II. For example, analyzed maximum parallelism of TVSBS-
W4 with given input data set yields 22R, 1W configuration.
Our recommendation algorithms lowers the port size to 5R,
1W configuration and this reduction decreases memory area



Benchmark

Analyzed

Maximum

Parallelism

Recommended

Maximum

Parallelism

Recommended

Average

Parallelism

MP Execution

time (1000x

cycles)

DP Execution

time (1000x

cycles)

Area

Increase MP

over

DP(times)

Execution

Speed up MP

over DP (%)

Area reduction of

recommendation

algoritm after

analysis algoritm

(%)

BMH-SBNDM 7R, 1W 4R, 1W 3.25 3900 7669 2,20 329 208

FAOSO2 8R, 1W 3R, 1W 3.30 7400 13949 1,51 318 366

FAOSO4 5R, 11W 2R, 6W 3.29 4897 8847 3,40 304 323

FAOSO6 5R, 11W 2R, 6W 4.1 10875 17145 3,40 268 323

FBOM 11R, 1W 3R, 1W 3.54 9932 20946 1,51 354 599

FJS 7R, 2W 3R, 2W 4.13 11489 30258 2,95 439 275

FSBNDM20 6R, 1W 3R, 1W 2.99 1755 3497 1,51 325 244

FSBNDM21 5R, 1W 2R, 1W 2.82 1817 3487 1,36 313 213

FSBNDM31 6R, 1W 3R, 1W 2.82 1704 3195 1,51 308 244

FSBNDM32 6R, 1W 3R, 1W 2.79 2023 3792 1,51 306 244

FSBNDM41 5R, 1W 2R, 1W 2.81 1909 3509 1,36 302 213

FSBNDM42 6R, 1W 3R, 1W 2.80 1915 3517 1,51 302 244

FSBNDM43 5R, 1W 2R, 1W 2.83 1931 3570 1,36 304 213

FSBNDM61 6R, 1W 3R, 1W 2.84 2327 4202 1,51 298 244

FSBNDM62 6R, 1W 4R, 1W 2.88 2326 4227 1,51 300 244

FSBNDM64 6R, 1W 3R, 1W 2.84 2351 4240 1,51 298 244

FSBNDM81 6R, 1W 3R, 1W 2.88 2714 4846 1,51 297 244

FSBNDM82 6R, 1W 3R, 1W 2.87 2712 4835 1,51 296 244

FSBNDM84 6R,1W 3R, 1W 2.86 2711 4814 1,51 295 244

FSBNDM86 6R, 1W 3R, 1W 2.85 3016 5357 1,51 295 244

GRASPM 11R, 1W 3R, 1W 3.70 6445 13800 1,51 359 599

KBNDM 7R, 2W 4R, 1W 3.64 6669 15126 2,20 380 244

SEBOM 11R, 1W 3R, 1W 3.54 9813 20734 1,51 355 599

SFBOM 9R, 1W 3R, 1W 3.48 9986 20925 1,51 352 439

TSW 7R, 1W 4R, 1W 3.26 6395 13874 1,51 363 208

TVSBS-W2 11R, 1W 4R, 1W 3.30 7525 15290 2,20 343 413

TVSBS-W4 22R, 1W 5R, 1W 3.39 8342 17397 2,91 352 526

TVSBS-W8 6R, 7W 3R, 2W 4.16 21847 51775 1,95 387 420

qsort iter 12R, 1W 4R, 1W 3.35 682 - 1.91 261 295

qsort rec 3R, 4W 1R, 3W 2.95 710 - 0.28 217 233

TABLE II: Analyzed and recommended multi-port configurations, improvement in execution time with gains in area and area
improvement introduced with recommendation algorithm

by 526%. Furthermore, fewer port sizes do not increase the
number of access steps. Thus, the average parallelism stays
the same. These improvements in area and port size reduction
also affect other parameters such as power consumption, en-
ergy consumption and delay positively. Nevertheless, handling
multiple accesses and ALU operations increase control and
arithmetic logic. Hence, aforementioned parameters can be af-
fected negatively. We will investigate the trade-off as the future
work. While leveraging ILP, we have aimed at simplicity when
designing our algorithms. Because, for accurate extraction of
parallelism, the input data size usually tend to be large.

Given one million string characters, one benchmark con-
sumes two hours of processor time in given hardware setup.
Recommendation algorithm consumes one hour of processor

execution time. The execution time depends on the number
of instructions. Execution time increases when the number of
instructions increase.

V. DISCUSSION AND CONCLUSION

Given a sequential algorithm, MIPT can be used for rapid
exploration of parallelism. All the string matching algorithms
we present are sequential. Our analysis and recommenda-
tion algorithms have leveraged parallelism and shown im-
provements when its inherent parallelism is exploited. This
is also true with any sequential algorithm given to MIPT.
Given an algorithm, MIPT can provide a starting point for
migrating software to hardware for hardware co-acceleration
through leveraging parallelism. After extracting parallelism,



data path could be designed based on memory and core
operations. Pipeline depth and units like register file or cache
size could be determined. MIPT can also help to differentiate
implementation differences between algorithms. For example,
Table II shows recursive and iterative versions of sorting ten
thousand elements with Quicksort [35]. The difference be-
tween execution times and average parallelism lies in different
parameters as well as the well known difference in the nature
of recursion and iteration programming paradigms. Pivot point
selection can change the number of accesses for both iterative
and recursive version. The recursion version needs to have
recursive function calls and this can be costly when number
of values to sort decrease. In the iterative version, the usage
of extra space for swapping values can also increase the
number of memory accesses. The effects of these difference
design decisions and programming choices can be identified
with MIPT framework.In conclusion, we have presented MIPT
framework that aims to improve ILP by analyzing execution
traces and register data dependencies and recommend a new
multi-port multi-issue schedule.
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