
Multiplierless Implementation of 2-D FIR

Filters

Arda Yurdakul

Boğaziçi University, Computer Engineering Department, Bebek, 34342, İstanbul,
Turkey

Abstract

In this paper, the multiplierless design of two-dimensional FIR filters is studied.
The adders that are used in place of multiplications are reduced by using the 2-D
CSE (CommonSubexpressionElimination) method which is developed in this paper.
This method decomposes the original filter into smaller filters and the output of each
filter is scaled with an appropriate coefficient to form the original filter output. It
is also shown in this paper that each step of this procedure is an NP-complete
problem. Hence, 0-1 integer programming model for each step is formed. Since
the solution of these models are time and memory consuming, heuristic algorithms
have also been developed. The heuristic 2-D CSE method proves to be better than
traditional implementations of 2-D filters in terms of adder count. Though power
and performance analysis of the produced filters have not been made, it is estimated
that power consumption of these filters will be low due to low interconnect density.
Also, concurrent processing of data with small filters increase the overall filtering
performance filter.

Key words: common subexpression elimination, integer programming,
multiplierless, 2-D FIR filter architecture.

1 Introduction

Two-dimensional FIR filters are vastly used in image and video processing
systems [1]. However, by definition, 2-D FIR filtering requires a huge amount
of computations and memory. Hence, the computational complexity must be
reduced so as to meet real-time requirements of today’s commercial applica-
tions with minimum implementation cost. The most common solution is the
replacement of each constant multiplication with a network of adders and
shifters [4]-[7]. This is called the multiplierless implementation. A 2-D FIR fil-
ter can also be implemented as a delayed-sum of 1-D multiplierless FIR filters

Preprint submitted to Integration, the VLSI Journal 28 May 2004

as shown in 1(a). Here, sharing the common terms between the coefficients in
each 1-D filter reduces the number of computations. A number of algorithms
have been developed for generating cost-effective multiplierless 1-D FIR filters
[2]-[3].

In the literature, there has not been a study how an efficient multiplierless
implementation of a 2-D FIR filter whose coefficients are obtained by quan-
tizing the infinite-precision coefficients. Also there has not been a study how
common sub-expressions can be exploited in 2-D FIR filters. This paper is the
first study that addresses the efficient multiplierless implementation of 2-D
filters with quantized coefficients. Here, both a method and an architecture
are presented to solve this problem. In the architecture, the filter is decom-
posed into binary filters, Hi, whose outputs are scaled and summed up to form
the original filter output (1(b)). A binary filter consists of only one-bit signed
or unsigned coefficients. This means that the adders in these filters are the
smallest-width adders because there does not exist any shifting operation. The
method presented in this study is developed to realize the architecture in 1(b)
with minimum number of adders by exploiting the common sub-expressions
between binary filters. In the following section, the problem will be stated.
It will be shown that the problem consists of three sub-problems that are
NP-complete. The first problem is the decomposition of the original filter into
binary filters. Note that the number of binary filters has a direct impact in
the number of adders. The second problem is the extraction of the common
patterns in the binary filters so as to reduce the adder cost by sharing these
common terms. The final problem is the extraction of common partial sums,
because the outputs of binary filters obtained in the second problem must
be added up to form the binary filters of the first problem and during this
process, some additions might be common and can be shared. In Section 3,
a heuristic algorithm is presented to solve the problem. The experimental re-
sults (Section 4) reinforce the initial claim that this algorithm produces more
efficient architectures than traditional ones. Though power and performance
analysis of the produced filters have not been made, it is estimated that power
consumption of these filters will be low due to low interconnect density. Also,
concurrent processing of data with small filters increase the overall filtering
performance filter.

2 Theory

Throughout this section, it will be assumed that H is a filter whose coefficients
are real numbers in [−1, 1].

2

H1

H2

H3

HJ

Adder/
shifter

network

y1 a1

aλ

a2y2

Y

X
a2

y2

yλ aλ yλ

a1y1

2-D binary filters

X

1-D multiplierless filter

1-D multiplierless filter

1-D multiplierless filter

1-D multiplierless filter

Y

(a) (b)

Fig. 1. Implementation of a multiplierless 2-D filter, (a)with multiplierless 1-D FIR
filters, (b)with binary 2-D filters.

2.1 Decomposition into Sub-filters

In multiplierless realizations, a constant multiplicand c can be written, without
loss of generality, as

c =
L−1∑
b=0

cb2
−b, (1)

Obviously, if two’s complement is used in the representation of cb, then cb ∈ B.
Signed representations allow also the usage of −1 in the representation of cb.
Here, L can be regarded as the quantization wordlength. Using this equation,
a nonseparable two-dimensional filter, H can be decomposed into L binary
filters in a similar manner:

H =
L−1∑
b=0

Hb2
−b, (2)

where each sub-filter, Hb, consists of only −1, 0 and 1. Recall that the number
of sub-filters directly affects the total number of additions in the system.
Hence, Eq 2 hints that the nonseparable two-dimensional filter H can also
be written as a linear combination of binary filters:

H =
λ∑

l=1

Hlal. (3)

where al is an L-bit fractional scalar.

Theorem 1 ”Decomposition of a two-dimensional filter into scaled-sum of
binary filters” problem is NP-complete.

3

Proof: Let Hint = round
(
H2L

)
and al = round

(
al2

L
)
. Since al is a bounded

integer variable, al take any value between 0 and vmax. Then Eq. 3 can be
generalized as

Hint =
vmax∑
l=0

lHl. (4)

Note that the coefficients of these sub-filters can be either signed-binary or 0.
Binary filters can be written as Hl = H+

l − H−
l such that both H+

l and H−
l

contains only 1 or 0. Then,

Hint =
vmax∑

l=−vmax

lHs
l . (5)

such that Hs
l is either H+

l or H−
l . Based on this reformulation, an instance

of the problem can be defined as ”Given a two-dimensional filter Hint with
integer coefficients, is

{
Hs

l ∈ B :
∑vmax

l=−vmax
lHs

l = Hint

}
6= ∅?” The proof is

as follows: Membership in NP is shown by guessing binary coefficients for
Hs

l . Membership in NPC will be demonstrated by polynomially transforming
an instance of the subset sum problem to the instance of this problem. An
instance of the subset problem is defined as the decision problem in the form
”Given ηl and b as integers, is {xl ∈ B :

∑
l∈S ηlxl = b} 6= ∅?”. Firstly note that

ηl can be made lower than vmax by selecting the quantization wordlength L
appropriately. Define an impulse filter Hb such that only one of its coefficients
is nonzero. Let this nonzero coefficient be at the (i, j)’th entry of this filter
and let its value be b. Also define S as a set of impulse filters such that each
filter in S, i.e. Hl, has ηlxl at its (i, j)’th entry and the remaining entries are
0. From each filter in S, ηl can be factored out to form the binary filters whose
(i, j)’th entries are xl. Since

∑
l ηlxl = b from the definition of the subset sum

problem, then the impulse filter Hb can also be given as a linear combination
of impulse filters in S:

∑
l ηlHl = Hb. Recall that impulse filter is a special

filter such that all filter types can be formed by using appropriate impulse
filters. Q.E.D.

Since the aim is to minimize the number of adders in the overall system, the
0-1 integer programming model will be formed. Firstly the binary variables of

4

the model must be defined:

ql =

 1 , if l is used as a scalar.

0 , otherwise

pl =

 1 , if ql or q−l or both are selected.

0 , otherwise

(hij)l : (i, j)’th entry of Hs
l .

(6)

If the dimension of the filter is M × N , then the constraints of the problem
are as follows

Constraint 1 Eq 5 is rewritten for each entry hij of Hint.

∑vmax
l=−vmax

l (hij)l = hij , 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1 (7)

Constraint 2 If at least one entry of Hs
l is nonzero, then l will be used as a

scalar in the implementation.

MNql −
∑M−1

i=0

∑N−1
j=0 (hij)l ≥ 0, −vmax ≤ l ≤ vmax (8)

Constraint 3 If both ql and q−l are selected, then the filters must be combined
to reduce the cost:

2pl − ql − q−l ≥ 0, 1 ≤ l ≤ vmax (9)

The objective function will consist of three items. Firstly, each filter will be
implemented using adders only. Secondly, adders and shifters will be also used
to implement each scalar because each scalar is an integer number which can
be represented with L-bit signed binary string. Let σl be the minimum number
of adders required in the representation of l and −l. Finally, the number of
selected scalars will determine the number of additions to sum the scaled
sub-filter outputs. Then the total number of adders A is

A =
vmax∑

l=−vmax

pl +
M−1∑
i=0

N−1∑
j=0

(
|hij|l − 1

)+
vmax∑
l=0

plσl − 1 (10)

The decomposition of the filter with minimum number of adders, A∗, is the
solution of the model defined as ”A∗ = min A such that equations 7, 8 and 9
are satisfied”.

5

2.2 Common Term Extraction in Sub-filters

The number of adders required for the implementation of the binary filters of
Eq. 3 can be reduced further by generating a set of binary filters that will be
summed up.

Theorem 2 ”Implementation of a binary filter as a sum of binary filters”
problem is NP-complete.

Proof: An instance of this new problem can be defined as follows: ”Given
a set of binary filters Hn where 1 ≤ n ≤ N and a binary filter Hl, is
{qnl ∈ B :

∑
n Hnqnl = Hl} 6= ∅?” The membership in NP can be easily shown

by guessing the binary filters. The membership in NPC can be easily shown by
polynomially transforming an instance of set-partitioning feasibility problem
(”Given an M×N 0-1 matrix A, is

{
x ∈ BN : Ax = 1

}
6= ∅?”) to an instance

of this problem. Let the output vector 1 represent the nonzero entries of Hl

such that Hl has M nonzero entries. Arbitrarily assign i and j values for each
entry in 1 such that i + j = m. Using this assignment, form a binary filter
Hl such that for assigned values of (i, j), the filter coefficient (hij)l = (−1)m

and the remaining coefficients are zero. Similarly, let the column vector An

represent the coefficients of Hn such that for assigned values of (i, j), the filter
coefficient (hij)n = amn. (hij)l and the remaining coefficients are zero. In this
way, n binary filters have been formed from matrix A. So an instance of the
set partitioning feasibility problem is polynomially transformed to an instance
of the new problem. The set-partitioning problem has a solution if and only
if there exists at least a 1 at each row,

∑
n amn ≥ 1. Similarly, the new prob-

lem has a solution only when there exists at least one sub-filter that has the
nonzero coefficient of the binary filter,

∑
n

∣∣∣(hij)n

∣∣∣ ≥ ∣∣∣(hij)l

∣∣∣. Q.E.D.

Now, a method will be defined to extract the binary filters that will be used to
implement the sub-filters in Eq. 3. Let Λ(0) denote the ordered-set of sub-filters
satisfying Eq. 3. The sub-filters in Λ(0) can be ordered in a completely arbitrary
manner but once they are ordered, the order must not change. Let Qx,y denote
the ordered subset that contains the sub-filters of Λ(0). Here, x is the number
of sub-filters in the subset and y is the order of the subset among the subsets
having the same number of elements. Let Hm and Hn be the elements of a
subset that contains only these two sub-filters, say Q2,y and let m < n. The
common filters that contain common terms of both Hm and Hn, can be found
by positive and negative intersection operations whose definitions are given as
follows:

Definition 1 (Positive intersection) The positive intersection of Hm and Hn

is H1
2,y and it is defined as H1

2,y = Hm
⋂1 Hn. Each coefficient (hij)

1
2,y is given

6

by

(hij)
1
2,y =

 (hij)m , if (hij)m = (hij)n

0 , otherwise
, m < n (11)

Definition 2 (Negative intersection) The negative intersection of Hm and Hn

is H0
2,y and it is defined as H0

2,y = Hm
⋂0 Hn. Each coefficient (hij)

0
2,y is given

by

(hij)
0
2,y =

 (hij)m , if (hij)m = − (hij)n

0 , otherwise
, m < n (12)

Using these definitions, Hm and Hn can be written as

Hm = H1
2,y + H0

2,y + Hm,(2,y)

Hn = H1
2,y −H0

2,y + Hn,(2,y)

(13)

where Hm,(2,y) and Hn,(2,y) are the remainders of Hm and Hn respectively.
These filters contain the terms that are covered neither by H1

2,y nor H0
2,y,

Lemma 1 If at least two nonzero terms exist in an intersection, then there
exists a common filter which is the intersection itself.

There are 2λ subsets of Λ(0). Therefore, there are 2λ−λ−1 subsets that contain
two or more sub-filters. According to Lemma 1, this is an upper bound on the
number of common filters. The common filter of a subset can be found by
using Lemma 1 with the Definitions 1 and 2 recursively as shown in 2. The
requirement for calling the find common routine is that each sub-filter in Qx,y

has at least two nonzero terms. Each sub-filter in the subset Qx,y is accessed by
the index of Qx,y. The term r0 is the root vertex of the tree and its assignment
with the first sub-filter in Qx,y is only for the initialization of the tree. Note
that this algorithm generates a binary tree of sub-filters and the generation
order is important to reconstruct the filters in Λ(0) (3). The values on the
arcs of the tree determines the intersection type such that a 1 stands for the
positive and a 0 stands for the negative intersection. Also the superscripts on
the leaves of the tree show the intersection orders. The reconstruction equation
for each sub-filter can be obtained by using these leaves and the intersection
order.

Let Λ(1) denote the set of common filters and remainders that are derived
from Λ(0) such that the common filters due to subsets with one sub-filter, i.e.
Q1,y,∀y, do not appear in Λ(1). Note that each filter appears only once in

7

find common
(
Qx,y,Λ(0)

)
{ l = Qx,y [1] ;

p = 2;
tcx,y [r0] = Hl;
common

(
Hl, Qx,y, p, x,Λ(0), tcx,y

)
;

return
(
tcx,y

)
;

}
common

(
Hm, Qx,y, p, x,Λ(0), tcx,y

)
{ l = Qx,y [p] ;

H1 = Hm
⋂1 Hl;

H0 = Hm
⋂0 Hl;

if
(∣∣H1

∣∣ > 1
)

tcx,y [Hm] → left = H1;
if
(∣∣H0

∣∣ > 1
)

tcx,y [Hm] → right = H0;
if (p < x)
{ if

(∣∣H1
∣∣ > 1

)
common

(
H1, Qx,y, p + 1, x,Λ(0), tcx,y

)
;

if
(∣∣H0

∣∣ > 1
)

common
(
H0, Qx,y, p + 1, x,Λ(0), tcx,y

)
;

}
return

(
tcx,y

)
;

}

Fig. 2. Algorithm that generates possible common terms in Qx,y

Λ(1). Then Hl ∈ Λ(0) can be written by using the filters in Λ(1). If Λ(1) 6= ∅,
then additional common terms can be extracted by forming new subsets from
the filters in Λ(1), i.e. the whole procedure explained for Λ(0) can be repeated
for Λ(1) and the resulting filters will form Λ(2). This recursion continues until
Λ(i) = ∅. Let the final recursion that leads a nonzero set be represented with I.
For every filter H

(i)
l in Λ(i), there exist a number of reconstruction equations

that use the filters of Λ(i+1). Let H
(i)
l,z be the z’th reconstruction equation

for H
(i)
l and let Q

(i)
l,z be the set of filters that are used in the reconstruction

equation H
(i)
l,z . Then,

H
(0)
l,z =

∑∣∣∣Q(1)
l,z

∣∣∣
n=1 sl,z,nH

(1)
n ,∀Hl ∈ Λ(0) (14)

where sl,z,n is the sign of Hn in H
(i)
l,z . Based on these definitions a 0-1 integer

programming model can be formed to solve the problem stated in Theorem 2

8

H1 = H1
1H3 H0 = H1

0H3

1 0

0

H10 = H1 0H4

H1

1 1

1 1

1 -1

-1 1

-1 0

-1 -1

1 0

0 1

0 1

1 0

1 0

0 1

H1 H3 H4

(a)

Q3,1={H1,H3,H4}

(b)

0 0

-1 0

H4,(3,1)

H4 =(-H10)(3,1)+H4,(3,1)

H3 =(H10)3,1+H3,(3,1) =(H10-H0)3,1

H1 =(H10)3,1+H1,(3,1) =(H10+H0)3,1

Fig. 3. Generation of common terms in Q3,1 = {H1,H3,H4}: (a)Filters in Q3,1,
(b)the generated tree and the reconstruction equations.

with minimum number of adders. The binary variables of the problem are

q
(i)
l =

 1 , if filter H
(i)
l is selected

0 , otherwise

q
(i)
l,z =

 1 , if equation H
(i)
l,z is selected

0 , otherwise

p
(i)
l =

 1 , if either H
(i)
l or H

(i)
l,z is selected

0 , otherwise

(15)

The constraints of the problem are as follows:

9

Constraint 4 Exactly one equation or the sub-filter itself is required to im-
plement each filter H

(0)
l in Λ(0):

q
(0)
l +

∑
y q

(0)
l,z = 1 , 1 ≤ l ≤ λ (16)

Constraint 5 At most one equation or the sub-filter itself is required to im-
plement each filter H

(i)
l in Λ(i) for all i ≥ 1 :

p
(i)
l −

(
q
(i)
l +

∑
y q

(i)
l,z

)
= 0 , 1 ≤ l ≤

∣∣∣Λ(i)
∣∣∣ , 1 ≤ i < I (17)

Constraint 6 If an equation is selected for the implementation, then all of
the filters in the equation must be selected simultaneously:

∣∣∣Q(i+1)
l,z

∣∣∣ q(i)
l,z −

∑∣∣∣Q(i+1)
l,z

∣∣∣
n=1 p(i+1)

n = 0
, 1 ≤ l ≤

∣∣∣Λ(i)
∣∣∣

,∀y, 0 ≤ i < I
(18)

Since the aim is to minimize the number of adders in the implementation, the
objective function should be as

Ac =
I∑

i=0

λ∑
l=1

∑
y

(∣∣∣Q(i+1)
l,z

∣∣∣− 1
)
q
(i)
l,z +

I∑
i=0

λ∑
l=1

c
(i)
l q

(i)
l (19)

Therefore, the 0-1 integer programming model can be summarized as ”A∗
c =

min Ac such that equations 16, 17, 18 hold simulataneously.”

2.3 Common Partial Sum Extraction

The solution of the common partial sum extraction problem is a number of
selected filters and equations. Starting from the filters of Λ(I), Eq 14 can be
iteratively used to obtain the filters and equations at i− 1. At the end of this
procedure, each sub-filter in Λ(0) will be written in terms of sub-filters that
might belong to different recursion levels:

Hl =
∑I

i=0

∑|Λ(i)|
n=1 s

(i)
l,nq

(i)
n H(i)

n ,∀Hl ∈ Λ(0) (20)

Here, the inner sum is actually Eq 14 that is written in a way to include
the binary filter selection variables. The outer sum is required to scan sets of
all recursion levels. Common partial sum extraction will be handled on these
equations for all Hl ∈ Λ(0).

10

Example 1 Assume that there are two filter reconstruction equations, H1 =
A+B+C and H2 = A+B−C. If H1 and H2 are implemented as they are, then
four adders will be required. However studying these equations simultaneously
will easily show that A + B is a partial sum that is common in both filters.
Then an implementation like K = A + B, H1 = K + C and H2 = K −C will
require three adders.

Let us form a bit string of length w for each sub-filter Hl ∈ Λ(0) :

w =
I∑

i=0

∣∣∣Λ(i)
∣∣∣ (21)

Note that Λ(i) is an ordered set and each sub-filter of Λ(i) is represented with a
binary variable q(i)

n , 1 ≤ n ≤
∣∣∣Λ(i)

∣∣∣. Let σl denote the corresponding bit string
for Hl. The j’th entry in bl is given by the following equation:

σl [j] = σl

[
n +

∑i
m=0

∣∣∣Λ(m)
∣∣∣] = s

(i)
l,nq

(i)
n

, 1 ≤ n ≤
∣∣∣Λ(i)

∣∣∣
, 0 ≤ i < I

, 1 ≤ j ≤ w

(22)

Note that the sum term in the calculation of the index is tricky: The summa-
tion is not carried out when m = i. In this way, the implementation style of
each sub-filter Hl ∈ Λ(0) will be encoded in the related bit-string bl.

Let pj be a bit-pattern of length w. Note that the entries of pj are from the
set {−1, 0, 1}. Let P be the set of all possible bit-patterns.

Theorem 3 Implementing a bit-string as a sum of bit-patterns is an NP-
complete problem

Proof: An instance of the problem can be stated as follows: ”Given a bit string
σl and a set of bit patterns P and a binary variable qj, is

{
qj ∈ B :

∑
j qjpj = σl

}
”?

Note that this is quite similar to the problem defined in Theorem 2. Since the
proof is also similar, it is skipped.

3 The Algorithm

In this section, the developed heuristic algorithm is explained. It consists of
three subroutines as in previous section.

11

3.1 Decomposition into Sub-filters

Let hij be the odd integer equivalent of hij, which is the (i, j)’th entry of H:

hij = round
(
hij2

L
)

2−mij such that hij ∈ Zodd (23)

Note that the quantized entries of the filter, hq
ij, can be obtained from h

q

i,j. Let
Hq be the quantized filter where each entry is represented by hq

ij. An example
is shown in 4(a).

The heuristic algorithm operates on the quantized 2-D filter It recursively
generates the scalars and filters of Eq. 3. However, these filters are super-binary
filters. A super-binary filter is a binary filter where each entry of a super-binary
filter consists of a signed bit and the number of shifting operations. Note that
a super-binary filter can be easily decomposed into binary filters by applying
Eq. 2 on the super-binary filter. The algorithm tries to maximize the number
of adders in the scalars so that the number of sub-filters is decreased. In this
way, it is aimed to minimize the number of adders in the overall system. The
initial call of the algorithm requires l to be initialized with 1 so that Eq. 3 will
hold. Below, the functions of the algorithm are explained with the aid of the
example in 4. Here, the quantization wordlength of the coefficients is eight-bit
for the fractional part:

Step 1 Using Hq, generate C, the array of unique odd integers given by Eq.
23 (4(b)).

Step 2 Generate an adder dag (direct acyclic graph), τ , from C such that
where the source is an imaginary input signal, d and each sink is the scaled
signal with a coefficient in C. This can be done with any algorithm that min-
imizes the number of adders in a 1-D system. In this study, the algorithm
in [3] is used due to its fast computation time and low memory requirement
(refsamplerun2Ddecompose(c)).

Step 3 Extract τ ∗, the most expensive common sub-dag of τ in terms of adder
count. The union of all paths from a sink to the source defines the sub-dag due
to the related coefficient. Let Υ be the hypergraph that contains all sub-dags.
Generate all possible sub-hypergraphs of Υ so that each sub-hypergraph will
contain at least two sub-dags. The intersection of a hypergraph can be defined
as the sub-dag of weighted-edges and nodes that are common in all the dags
of the hypergraph. As the aim is the minimization of the number of adders
in the whole system, firstly select the sub-hypergraph with maximum cardi-
nality. If there are more than one candidate, then select the sub-hypergraph
with the maximum number of adders in its intersection. If these conditions
do not suffice, then introduce additional criteria like adder-width, distinction

12

0,333 -0,6671 0
0,333 -0,333-0,667-1

0,3331 -0,40,2
H

1 0
-1

151x2-8

Hq=
-51x2-7 85x2-8

-85x2-885x2-8

85x2-8 -171x2-8

-171x2-8

>>2 >>2
-1

>>4 >>4

>>2
-185d

171d

51d

d

85d

>>2

>>4

d
>>2

>>4

>>2
-1

171d

d

51d

>>2

>>4

d

-1

>>2

>>4

d

τ1 τ2 τ3

τc

Τ Τ∗

>>2

>>4

d

101

1010101

1

a1=85

,01010101 ,10101011 ,01010101
,01010101,01010101

,010101011
-1

0
1,01010101

1,01010101

,01010101 ,10101011 0
00

01
-1

0
-1

-1

Hr=Hq-H1a1

10 0
00

0 00
00

0

0,1
,1010101

a2=51x2-7H2

01 0
00

0 0-1
-1-1

1

0

H3

C={51,85,171}={1010101,1010101,101010101}

(a)

(b)

(c)

,01010101 ,10101011 ,01010101
,01010101,01010101

,010101011
-1

0
1,01010101

1,01010101

00 1
-11

1 01
10

0

0

,01010101

a1=85x2-8H1

patterns that contain a1

patterns that contain -a1

Hq

(d) (e)

(f)

(g)

(h)

=

Fig. 4. Sample execution of the 2Ddecomposition algorithm: (a)A 2-D filter and
its eight-bit quantized version, (b)the C array, (c)the minimum-adder dag, (d)The
hypergraph of sub-dags and extraction of the common sub-dag, (e)calculation of
the first scalar, (f)generation of the first super-binary filter, (g)generation of the
remainder, (h)other sub-filters and scalars after the execution is over.

between addition and subtraction until one sub-hypergraph, Υ∗, remains. The
intersection of Υ∗ is the sub-dag τ ∗. In 4(d), the first condition is sufficient.

Step 4 Calculate the scalar al from the sub-dag τ ∗ as in refsamplerun2Ddecompose(d).

Step 5 Extract the 2-D super-binary filter from the original filter. The algo-
rithm starts with a null filter, i.e. all entries of Hl are 0. Recall that the sink
of a sub-dag in Υ∗ correspond to a coefficient in Hq. Firstly, the positions of
these coefficients in Hq are determined. Then within each coefficient, a pattern
that corresponds to al or −al is identified and the corresponding entries in Hl

are set to 1 or −1, respectively. The starting bit-position of the pattern in the
coefficient of Hq determines the amount of shift in the relevant entry of Hl.
In 4(f), extraction of the first sub-filter is shown.

Step 6 Form the remainder: Hr = Hq −Hlal (4(g)).

Step 7 Copy Hr to Hq and repeat the process until al = 1, i.e. the original
filter is completely decomposed into a set of scalars and super-binary filters as
shown in 4(h).

13

In some cases, the algorithm might produce similar sub-filters and scalars.
Hence, if there are more than one al (or Hl) with the same value, then the
related Hl’s (or al’s) must be added up and the iterative process is repeated
until uniqueness of Hl and al is satisfied.

3.2 Common Term Extraction in Sub-filters

Each super-binary filter is decomposed into binary filters by using Eq. 2:

H =
λ∑

l=1

Hlal =
λ∑

l=1

(
L−1∑
b=0

(Hb)l 2
−b

)
al (24)

Using the binary filters (Hb)l, the ordered set Λ(0) is obtained. Let Hj represent
one of these filters in Λ(0). The heuristic algorithm for extracting the common
terms in this set is simply a greedy table-search method:

Step 8 Call the function find common() (2) repeatedly to generate all pos-
sible common filters of Λ(0). Note that if no common terms exist in a subset,
say Qx̂,ŷ where x̂ ≥ 2, then there is no need for calling the function for the
subsets that contain Qx̂,ŷ . In this way, the generation time of all common
terms can be reduced drastically. Let set Λ contain these common filters and
the sub-filters in Λ(0).

Step 9 Form the following tables and arrays:

(1) Table Θ such that the columns stand for the place of the nonzero terms
in filters in Λ(0) and rows stand for the filters in Λ. The super-columns in
the table are the groups of columns such that j’th super-column represents
Hj ∈ Λ(0). Fill the table in such a way that the (n, γj)’th entry in Θ is
the value of the γ’th entry in Hj ∈ Λ(0) if the n’th filter in Λ contains it,
otherwise it is 0.

(2) Table Φ such that columns stand for the filters in Λ(0) and rows stand for
the filters in Λ. Fill the table in such a way that the (n, j)’th entry in Φ
is the number of nonzero terms in the n’th row and j’th super-column of
Θ.

(3) Table R so as to store the selected rows of Θ.
(4) Array Ω1 that holds the number of nonzero entries in each row of Φ.
(5) Array Ω2 holding the sum of numbers in each row of Φ.
(6) Array Ω3 that holds the maximum number of the nonzero entries in each

row of Φ.

Step 10 Process the tables and arrays:

14

(1) If a row ne of Θ has all the entries that another row nf has, then ne is
covered by nf . Then delete row ne in all tables and arrays if Ω1 [ne] ≤
Ω1 [nf].

(2) Among the rows where Ω3 [n] = Ω2 [n] /Ω1 [n], select row n∗ in Θ such that
Ω1 [n∗] is the maximum in Ω1. If there exists more than one candidate,
then select the one such that Ω2 [n∗] is also maximum.

(3) Include row n∗ in R.
(4) In Θ, delete columns that correspond to the nonzero entries of n∗. Recal-

culate values in Φ, Ω1, Ω2 and Ω3.
(5) In all tables and arrays, delete rows that do not contain nonzero entries.
(6) Repeat the process until no rows exist in Θ.

In 5, the execution of the algorithm on an example is shown. In this example,
the starting set Λ(0) consists of four filters (5(a)). All non-empty common
filters of this set are generated (5(b)) and the final set Λ is simply the union
of both sets. After the tables and arrays formed for Λ (5(c)), the iteration
starts. Firstly, the covered rows are erased. Here rows E and I are covered by
row J . Since Ω1 [E] = Ω1 [I] ≤ Ω1 [J], then E and I are deleted. Similarly row
B is erased since it is covered by row H and Ω1 [B] ≤ Ω1 [H]. The reduced
tables and arrays are shown in 5(d). According to Step 10.2, the last row is
the first selected filter to implement the system (5(e)). After the tables and
arrays are processed to reflect the effects of the selection, the second iteration
starts. After deleting covered rows, the tables and arrays are as in 5(f). In this
iteration, again the first row is selected according to Step 10.2. The iterations
continue until Θ is empty and the final form of table R and the corresponding
filters are shown in 5(g). Using these filters, the filters in Λ(0) are written as
A = J∗ + F ∗, B = G∗, C = J∗ − F ∗, and D = −J∗ + H∗. Note that the
implementation of initial set requires nine adders in 5(a) while six additions
are required in 5(g).

3.3 Common Partial Sum Extraction

Common partial sum extraction problem has been two-fold due to the previ-
ously defined heuristic algorithms. Firstly, using the equations derived from
table R, the bit strings can be formed as described in Eq. 22. Secondly, re-
call that the decomposition of the initial filter generates super-binary filters
which are decomposed into binary filters as specified in Eq. 24. Hence, the
initial problem definition of Section 2.3 has to be enhanced to handle this new
structure. An example is shown in 6(a). It has been shown that the original
problem in Theorem 3 is NP-complete. Obviously the expanded problem will
be much harder than the initial one. The following heuristic algorithm is the
slightly modified version of the algorithm presented in [3]:

15

 R
 A B C D
 a b c d b d a b c d a c d

J* 1 1 1 1 -1 -1
F* 1 1 -1 -1
G* 1 -1
H* -1

(e)

 R
 A B C D
 a b c d b d a b c d a c d

J* 1 1 1 1 -1 -1

(d)

 Θ Φ
 A B C D
 a b c d b d a b c d a c d A B C D Ω1 Ω2 Ω3

A 1 1 1 1 4 1 4 4
C 1 -1 -1 1 4 1 4 4
D -1 -1 -1 3 1 3 3
F 1 1 -1 -1 2 2 2 4 2
G 1 1 1 -1 -1 -1 3 3 2 6 3
H 1 -1 -1 1 2 2 2 4 2
J 1 1 1 1 -1 -1 2 2 2 3 6 2

(g)

(c)

 Θ Φ
 A B C D
 a b c d b d a b c d a c d A B C D Ω1 Ω2 Ω3

A 1 1 1 1 4 1 4 4
B 1 -1 2 1 2 2
C 1 -1 -1 1 4 1 4 4
D -1 -1 -1 3 1 3 3
E 1 1 1 1 2 2 2 4 2
F 1 1 -1 -1 2 2 2 4 2
G 1 1 1 -1 -1 -1 3 3 2 6 3
H 1 -1 -1 1 2 2 2 4 2
I 1 1 -1 -1 2 2 2 4 2
J 1 1 1 1 -1 -1 2 2 2 3 6 2

 (a) (b)

0 1

1 0

E = A
1C

F = A
0C

1 0

0 1

I = C
0D

J =(A
1C) 0D

1 0

1 1

G = A
0D

0 1

0 -1

H = B
0C

a b

c d

1 1

1 1

1 -1

-1 1

-1 0

-1 -1

A=H1

C=H3 D=H4

0 1

0 -1

B=H2

1 0

0 1

0 1

0 -1

0 0

-1 0

J*

G* H*

0 1

1 0 F*

(f)

 Θ Φ
 A B C D
 b c b d b c c A B C D Ω1 Ω2 Ω3

F 1 1 -1 -1 2 2 2 4 2
G 1 -1 1 1 2 2 1
H 1 -1 -1 2 1 2 3 2

Fig. 5. Heuristic extraction of common filters and remainders : (a)The starting filter
set Λ(0) and the position template, (b)the first level common-filter set, (c)initial
tables and arrays, (d)the first iteration: Tables and arrays after covered rows are
deleted and selection of the first common term, i.e. J , (e)the solution table R after
the first iteration (f)the second iteration: Tables and arrays after covered rows are
deleted and selection of the second common term, i.e. F , (g)the final solution table
R and the filters.

Step 11 For each super-binary filter Hl, form an array αl of length
∣∣∣Λ(0)

∣∣∣.
If a sub-filter in Λ(0), say Hj, is used in the representation of Hl, then find
the amount of shifts, b, that is required at its output by using Eq 24. If Hj =
± (Hb)l, then set the j’th entry of the array to ±2−b.

Step 12 Using all arrays simultaneously, do the following procedure:

(1) Compute all two-terms in all strings. Here, the two-term ρ is the modified
version of the two-term that was initially introduced in [9]. A modified
two-term can be computed as follows: Find two nonzero entries in a string.
Let j1 and j2 be the places and s1 and s2 be the signs of these two entries.
Also let v1 = s12

−b1 and v2 = s22
−b2 be the values of the first entry and

the second entry respectively. Here, ρ = (j1, j2) pair is the two-term. The
value of the two-term is

vρ =
∣∣∣v12

j1+b1 + v22
j2+b1

∣∣∣ (25)

Let the process iteration variable i be the level of the entry. Initially,
all entries are at zeroth level. The level of the two-term is given by the
max (i1, i2). Note that a two-term appears only once in a string.

(2) If a common partial sum exists, then obviously there will be multiple copies
of the same two-term. The cost of a two-term is the number of copies.
Pick the most expensive two-term. If there exists more than one candidate,
then pick the one with lowest level. If still there is not a single candidate,
then pick the one with maximum value. Let this two-term be defined as

16

DCBAH +++= −− 21
1 22 (3 adders, 2 shifters)

DCBAH −++= −−− 321
2 222 (3 adders, 3 shifters)

TOTAL (6 adders, 5 shifters)

sub-filter
 name A B C D

position 3 2 1 0
1α 1 12− 22− 1

2α 12− 22− 32− -1

position 3 2 1 0
1α *

1ρ 0 22− 1

2α *
1ρ

12− 0 32− -1

position 3 2 1 0
1α *

2ρ 0 0 1

2α *
2ρ

12− 0 0 -1

BA 1*
1 2−+=ρ (1 adder, 1 shifter)

C2*
1

*
2 2−+= ρρ (1 adder, 1 shifter)

DH += *
21 ρ (1 adder)

DH −= − *
2

1
2 2 ρ (1 adder, 1 shifter)

TOTAL: (4 adders, 3 shifters)

(a)

(b)

(c)

(d)

(e)

ρvρ

ρ ρv

 ()21 , jj cost (array #) level 21 jj −
1ρ (3,2) 2 (1,2) 0 1 10
2ρ (3,1) 2 (1,2) 0 2 8,5
3ρ (3,0) 1 (1) 0 3 9

4ρ (3,0) 1 (2) 0 3 6
5ρ (2,1) 2 (1,2) 0 1 5

6ρ (2,0) 1 (1) 0 2 6

8ρ (2,0) 1 (2) 0 2 2

7ρ (1,0) 1 (1) 0 1 5

9ρ (1,0) 1 (2) 0 1 -6

 ()21 , jj cost (array #) level 21 jj −
2ρ (3,1) 2 (1,2) 1 2 80,5
3ρ (3,0) 1 (1) 0 3 81

4ρ (3,0) 1 (2) 0 3 78
7ρ (1,0) 1 (1) 0 1 5

9ρ (1,0) 1 (2) 0 1 -6

Fig. 6. Extraction of common partial sums: (a)The starting filter set with partial
sums, (b)the starting arrays and the two-terms in the first iteration, (c)the arrays
and the two-terms in the second iteration, (d)the arrays after at the end of second
iteration (e)the resulting implementation utilizing common partial sums

ρ∗.
(3) In all strings that contain ρ∗, do the following: Delete the entry at j2.

Replace the entry at j1 with ρ∗s12
−b1 . Note that the value of this entry is

updated as v1 = vρ∗s12
−b1

(4) Repeat the procedure until there exists exactly one nonzero entry in all
strings.

The first two iterations of the algorithm is shown in 6. The selection of the
two-term is shown by boxed entries in every table of two-terms.

4 Experiments

The algorithm has operated on a number of infinite precision 2-D filters. The
first example is from [8], a nonseparable perfect reconstruction 2-D filter used
for block transform. In this table, 1-D stands for the implementation in 1(a)
and 2-D stands for the implementation proposed in this paper, i.e. 1(b). Ac-
cording to the results given in 1 the gain in the number of adders is more than
50% when wordlength required for the quantization wordlength is greater than

17

Table 1
Number of adders for [8]

Wordlength org 1-D 2-D

8 95 83 69

12 167 129 90

16 229 171 113

24 303 225 130

Table 2
Percent gain in the number of adders for different filter sizes

L 8 12 16 24

Size 1-D 2-D 1-D 2-D 1-D 2-D 1-D 2-D

5× 5 16 37 19 41 19 41 20 38

7× 7 18 34 24 43 26 44 28 46

9× 9 16 31 22 38 25 43 28 45

twelve bits. The algorithm is also executed in fifty different infinite-precision
filters with different sizes. 2 shows that the average percent-gain in the number
of adders increases as the wordlength increases. This is due to the fact that
the probability of common patterns increases in quantized coefficients with the
wordlength. As a more detailed illustration, the number of adders in different
7 × 7 filters for different quantization wordlengths is presented in 7. Also, 8
shows the adder requirements in different implementations. In this figure, org
represents the direct implementation where no subexpression sharing is done.

The algorithm has also been executed on a number of finite-precision filters in
[7]. The results are presented in 9. In this figure, a1a stands for the A filter of
Table A1 in [7]. As it can be observed, the adder gain in finite precision filters
is not as high as infinite precision filters, but still there is an improvement
after the new algorithm is applied.

The experimental results show that with the newly-developed 2-D CSE method,
the number of adders can be reduced more than original and the traditional
1-D implementations of 2-D filters. The interconnects in the 2-D filters gen-
erated with this method are local, hence it is estimated that the hardware
implementation will not consume too much area and power. Exact 0-1 integer
programming models have not been implemented for these filters because they
are memory and run-time inefficient.

18

25

35

45

55

65

75

0 10 20 30 40 50
filters

ad
de
rs

L=8 L=12 L=16 L=24
Fig. 7. The number of adders for different wordlengths. Size of the filters is 7× 7

50
70
90

110
130
150
170
190
210
230
250

0 10 20 30 40 50
filters

ad
de
rs

org 1-D CSE 2-D CSE
Fig. 8. The number of adders in different implementations. Size of the filters is 9×9
and L = 16.

19

0
10
20
30
40
50
60
70
80
90

100

a1
_a

a1
_b

a1
_c

a1
_d

a2
_a

a2
_b

a2
_c

a2
_d

a2
_e

a3
_a

a3
_b

a3
_c

a4
_a

a4
_b

a4
_c

a5
_a

a5
_b

a5
_c

a5
_d

a5
_e

filters

ad
de
rs

org 1-D CSE 2-D CSE
Fig. 9. Adders in different finite-precision filters.

References

[1] K. K. Parhi, VLSI Digital Signal Processing Systems. John Wiley & Sons, 1999.

[2] M. Martnez-Peir, E. I. Boemo, and L. Wanhammar, ”Design of high-
speed multiplierless filters using a nonrecursive signed common subexpression
algorithm,” IEEE Trans. Circuits Syst.-II, vol. 49, pp. 196-203, March 2002

[3] A. Yurdakul and G. Dündar, ”Fast and Efficient Algorithm for the Multiplierless
Realization of Linear DSP Transforms,” IEE-Proceedings-Circuits, Devices, and
Syst, vol.149, pp.205-211, August 2002.

[4] S. Pei and S. Jaw, ”Efficient design of 2-D multiplierless filters by
transformation,” IEEE Trans. Circuits Syst., vol. CAS-34, pp.436-438, Apr.
1987.

[5] P. Siohan and A. Benlismane, ”Finite precision design of optimal linear phase
2-D FIR digital filters,” IEEE Trans. Circuits Syst., vol. CAS-36, pp.11-21, Jan.
1989.

[6] H. K. Kwan and C. L. Chan, ”Circularly symmetric two-dimensional
multiplierless FIR digital filter design using an enhanced McClellan
transformation,” IEE-Proceedings-Circuits, Devices, and Syst, vol.136, pp.129-
134, June 1989.

[7] L. Banzato, N. Benvenuto and G. M. Cortelazzo, ”A design technique for

20

two-dimensional multiplierless FIR filters for video applications,” IEEE Trans.
Circuits Syst. Video Technol., vol. CSVT-2, pp.273-284, Sep. 1992.

[8] I. Celasun, Design of multidimensional perfect-reconstruction filter banks with
compression applications. PhD Thesis, Bogazici University, Turkey, 1996.

[9] A. Yurdakul and G. Dündar, ”Multiplierless realization of linear DSP tranforms
by using common two-term expressions,” Journal of VLSI Signal Processing
Systems, vol.22, pp.163-172, September/October 1999.

21

