
Parallel Cycle Based Logic Simulation using Graphics Processing Units

Alper Sen∗, Baris Aksanli∗, Murat Bozkurt∗, and Melih Mert∗
∗Department of Computer Engineering,

Bogazici University,
Istanbul, Turkey

Contact Email: alper.sen@boun.edu.tr

Abstract—Graphics Processing Units (GPUs) are gaining
popularity for parallelization of general purpose applications.
GPUs are massively parallel processors with huge performance
in a small and readily available package. At the same time,
the emergence of general purpose programming environments
for GPUs such as CUDA shorten the learning curve of GPU
programming. We present a GPU-based parallelization of logic
simulation algorithm for electronic designs. Logic simulation
is a crucial component of verification of electronic designs that
allows one to check whether the design behaves according to
the specifications. Verification of electronic designs consumes
more than 60% of the overall design cycle. Any attempts to
speedup the verification process (and logic simulation) results in
great savings and shorter time-to-market. We develop a parallel
cycle-based logic simulation algorithm that uses And Inverter
Graphs (AIGs) as design representations and exploits the
massively parallel GPU architecture. We demonstrate several
orders of speedups on benchmarks using our system.

Keywords-GPU, CUDA, design automation, verification

I. INTRODUCTION

Recent emergence of general purpose programming mod-
els coupled with extremely high performance, huge mem-
ory bandwidth, and comparatively low cost of Graphics
Processing Units (GPUs) are turning GPUs into a parallel
processing hardware platform for several types of appli-
cations. Compute Unified Device Architecture (CUDA) by
NVIDIA [1] is such a general purpose programming model
that has accelarated the development of parallel applications
beyond that of the original purpose of graphics processing.
CUDA is an extension to C language and is based on a
few abstractions for parallel programming. General Purpose
GPU (GPGPU) computing with CUDA has spread in various
application areas ranging from computational biology, to
computational finance and electronic designs, where huge
speedups have been achieved [2].

In this paper, we focus on parallelization efforts for veri-
fication of electronic designs. The complexity of electronic
designs have been rapidly growing. The task of verifying
such systems becomes an immense challenge and often
products are delivered with bugs. Logic simulation allows
us to check that the observed behavior of the design under
test respects the specification of the design. However, logic
simulation of designs with millions of components is time
consuming and has become a bottleneck in the design

process. Any means to speedup logic simulation results in
productivity gains and faster time-to-market. We observe that
electronic designs exhibit a lot of parallelism that can be
exploited by parallel algorithms. In fact, there are parallel
electronic design automation algorithms for almost all stages
in the implementation of a design such as logic optimization,
simulation, floor-planning, routing, and physical verification
stages.

There are two main types of logic simulation; Cycle-
Based Simulation (CBS) and Event-Based Simulation
(EBS). In CBS, evaluation schedule of gates in the design for
each step of simulation is determined once at compile time
of the simulator. EBS has a more complicated scheduling
policy where a gate is simulated only if at least one of
its input values have changed. Both CBS and EBS are
commonly used in the industry. In this paper, we work with
CBS since it has a less complicated static scheduling policy
that is amenable to better parallelization. However, we also
note that logic simulation has been classified as the most
challenging Computer Aided Design pattern to parallelize
in [3].

Logic simulation proceeds in two phases; compilation and
simulation. The compilation phase is part of any modern
simulator and is required to convert the design into an appro-
priate form for the simulation phase. Our GPU based solu-
tion is also composed of these two phases. In the compilation
phase, we perform several operations namely combinational
logic extraction, levelization, and clustering operations. This
phase has several GPU architecture dependent optimizations.
Levelization helps determine the dependency between gates,
where gates in the same level can be simulated in parallel.
Clustering helps partition the design into a collection of
smaller parts where each part can be simulated independent
of other parts. These operations are necessary because in
a gate level design, certain gates could have hundreds or
thousands of fanouts while most will have a few fanouts
resulting in irregular data access patterns. Clustering helps
organize access patterns for effective simulation. The simu-
lation phase is where thousands of threads are available to
simulate the compiled design in parallel. We use several
optimizations in simulation phase in order to reduce the
communication overhead between the GPU and the CPU.
In both phases, we exploit the GPU memory resources as

2010 Ninth International Symposium on Parallel and Distributed Computing

978-0-7695-4120-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ISPDC.2010.26

71

efficiently as possible in order to have low latency.
Our design representation for logic simulation is different

from the common design representations where we use And-
Inverter Graphs (AIGs), in particular we use the AIGER for-
mat [4]. AIG is an efficient representation for manipulation
of boolean functions. It is being growingly used in logic
synthesis, technology mapping, verification, and boolean
satisfiability checking. Since we use AIGs with only a
single type of combinational gate (and-gate), our algorithms
can efficiently use the limited low latency memory spaces
provided by the GPU.

We validated the effectiveness of our parallel CBS algo-
rithm with several benchmarks from OpenCores and IWLS.
We compared our parallel CBS algorithm with that of a se-
quential CBS algorithm. Our experiments show that parallel
CBS can speedup the simulation of designs several orders
over the sequential algorithm. In particular, we obtained
more than 5x speedup for a low density parity checker
design.

This paper is organized as follows. In the next section,
we give an overview of related work. We then describe
background in CUDA, AIGER format and logic simulation
in Section III. In section IV, we describe our parallel
CBS algorithm. Our experiments are in section V. Finally,
conclusions and future work is described.

II. RELATED WORK

Design patterns for parallelization in Computer Aided
Design (CAD) has been explained in [3]. The authors
consider 17 different CAD algorithms and partition these
algorithms in three categories; graph algorithms, branch and
bound search, and linear algebra. They also state that graph
algorithms in CAD (of which logic simulation is a member)
are the hardest to parallelize among these categories. Simi-
larly, CAD case studies of GPU acceleration can be found
in [5]. Some of these case studies are SPICE simulations,
fault simulation, static timing analysis, boolean satisfiability,
fault dictionary computation, and power grid analysis. The
authors describe optimization techniques for irregular EDA
applications on GPUs in [6]. In particular, they make use
of memory coalescing and shared memory utilizations that
improve the speedup of sparse matrix vector product and
breadth first search. There has been a lot of work on parallel
logic simulation using architectures other than GPUs. There
are several surveys on parallel logic simulation [7], [8]. In
particular, cycle-based simulation approaches are used by
IBM and others [9]. The simulation algorithms in these
works are aimed at loosely coupled processor systems.

Different partitioning algorithms for electronic designs
are described in [10], [11]. Some of these algorithms are
based on performance, layout, clustering, network flow, and
spectral methods. Our partitioning approach is similar to
cone clustering described in [12], where a fanin cone of
a circuit element embodies an area of combinational logic

that has the potential to influence signal values provided by
that element.

Several general purpose GPU applications can be found
in [2], [1]. The application domain ranges from physics
to finance and the medical field. The work in [13] gives
a performance study of general purpose applications using
CUDA and compares them with that of applications written
using OpenMP. OpenCL [14] is a relatively new standard
that is very similar to CUDA in that it is also an extension
of C language. CUDA is specific to NVIDIA GPUs, whereas
OpenCL can be run on different architectures and gives
you portability at the expense of potentially sub-optimal
performance for any specific platform. Also, CUDA is a
more mature environment with high-performance libraries
and accompanying mature tools like debuggers and profilers.

Our CBS algorithm is most similar to the work in [15].
However, there are several differences. We use AIGs as
gate level representation whereas they support a generic
library of gates. AIGs allow us to efficiently use the limited
low latency memory spaces. We use a threshold value in
clustering, whereas they start clusters from the primary
outputs. In case the design has too few or too many outputs,
their approach suffers from complication of the balancing
operations. There is an earlier logic simulation algorithm
using GPUs in [16]. However, this algorithm does not
provide performance benefits since they do not optimize data
transfer between GPU and CPU, use a different partitioning
approach and do not use the general purpose programming
language CUDA. There is also a recent work on event-
based simulation algorithm, which is also a commonly used
simulation technique in the industry, using CUDA [17].

III. BACKGROUND

In this section, we are going to present background on
CUDA programming, AIGER format, and sequential cycle
based logic simulation of electronic designs.

A. NVIDIA CUDA Programming

Compute Unified Device Architecture (CUDA) is a small
C library extension developed by NVIDIA to expose the
computational horsepower of NVIDIA GPUs [1]. GPU is
a compute device that serves as a co-processor for the
host CPU. CUDA can be considered as an instance of
widely used Single Program Multiple Data (SPMD) parallel
programming models. A CUDA program supplies a single
source code encompassing both host and device code. Ex-
ecution of this code consists of one or more phases that
are executed either on the host or device. The phases that
exhibit little amount of parallelism are executed on the host
and rich amount of parallelism are executed on the device.
The device code is referred to as kernel code.

The smallest execution units in CUDA are threads. Thou-
sands of threads can work concurrently at a time. GPU
has its own device memory and provides different types of

72

memory spaces available to threads during their execution.
Each thread has a private local memory in addition to the
registers allocated to it. A group of threads forms a CUDA
block. A CUDA block can have at most 512 threads, where
each thread has a unique id. A group of blocks forms
a CUDA grid. Each thread block has a shared memory
visible to all threads of the block within the lifetime of
the block. Access to shared memory is fast like that of a
register. Threads in the same block can synchronize using
a barrier, whereas threads from different blocks can not
synchronize. Each thread has access to the global device
memory throughout the application. Acces to the global
memory is slow around 400-600 cycles. There are also
special memory spaces such as texture, constant, and page-
locked (pinned) memories. All types of memory spaces are
limited in size, and should therefor be handled carefully in
the program. Figure 1 displays NVIDIA CUDA arcitecture
with several multiprocessors that can execute one or more
blocks in parallel.

Figure 1. CUDA Architecture

B. AIGER Format

And-Inverter Graph (AIG) is a directed, acyclic graph
that represents a structural implementation of the logical
functionality of a design, circuit or network. AIGER format
is an implementation of AIGs [4]. An AIG is composed of
two-input and-nodes (combinational elements) representing
logical conjunction, single input nodes representing memory
elements (latches, sequential elements), nodes labeled with
variable names representing inputs and outputs, and edges
optionally containing markers indicating logical negation.
We refer to and-nodes and latches as gates. AIG is an effi-
cient representation for manipulation of boolean functions.

There has been a growing interest in AIGs as a functional
representation for a variety of tasks in Electronic Design
Automation (EDA) such as logic synthesis, technology map-
ping, verification, and equivalence checking. Especially, the
recent emergence of efficient boolean satisfiability (SAT)
solvers using AIGs instead using the Binary Decision Di-
agrams (BDD) has made AIGs popular in EDA.

Figure 2 displays an example circuit design. In this figure,
and-gates are identified as G#, where # stands for the unique
gate number; and latches are identified as L#, where # stands
for the unique latch number. i# and o# stand for (primary)
inputs and (primary) outputs, respectively.

Figure 2. An example design

C. Sequential Cycle-Based Simulation

Cycle-based simulation (CBS) is a commonly used logic
design simulation technique. Given a sequence of input
vectors, the goal is to generate the output vectors of the
design. CBS is a form of time driven or compiled mode
simulation because the evaluation schedule of gates for each
simulation step is determined once at the compile time of
the simulator. The time in CBS is not a physical time rather
an integer that denotes the current cycle. CBS represents
a fast alternative to event-based simulation. In CBS, logic
values of all gates are calculated at clock defined cycle
boundaries, whereas event-based simulators calculate logic
values of a gate if a change occurs at the inputs of that
gate. This property of CBS may bring some redundancy
since inputs of a combinational element may not change at
every cycle. However, it eliminates costly management of
scheduling of events as in event-based simulation resulting
in efficient implementation rules and better performance.

Figure 3 displays a pseudocode for a sequential CBS
algorithm. In our case, since we use AIGER format, the only

73

combinational elements are and-gates. At each step, both
combinational and sequential elements are evaluated. First,
the combinational elements are evaluated generating the next
latch values. The combinational elements can be simulated
in any order as long as the inputs of an and-gate are ready for
the current cycle. An optimization at this step would be to
levelize the combinational elements and simulate them level
by level, which we will explain in detail in the next sections.
Second, sequential elements are simulated. The next latch
values are stored in a second set of latch variables that
will take the role of the present (current) latch variables
in the next cycle. Finally, the output values are calculated at
every cycle using the current values of sequential elements
and combinational elements. For example, assuming that the
latch values are initially all zero, the outputs of the design in
Figure 2 with respect to a given input sequence is displayed
in Table I.

obtain the number of simulation cycles;
for i=0 to number of cycles do

read inputs;
simulate all combinational elements;
simulate all sequential elements;
generate outputs;

end for
Figure 3. Sequential Cycle-Based Simulation Algortithm

Cycle Inputs Latches Outputs
i1i2i3i4i5i6i7i8 L1L2L3 o1o2

0 11111111 000 00
1 01111111 111 11
2 11111111 110 01

Table I
CYCLE-BASED SIMULATION OF DESIGN IN FIGURE 2

IV. PARALLEL CYCLE-BASED SIMULATION USING
GPUS

In this section, we describe our algorithm. Figure 4
displays a pseudocode for our parallel CBS algorithm with
compilation and simulation phases. First, we extract combi-
national elements of a design since we can simulate com-
binational and sequential elements separately as described
in Figure 3. Next, we levelize the extracted combinational
design. Then, we divide the levelized design into clusters
which are sets of gates that we define later. We then simulate
combinational elements in parallel followed by sequential
elements. Now we give details of our algorithm.

A. Levelization

In CBS, we can simulate combinational and sequential
elements separately. Combinational elements can also be

{compilation phase}
extract combinational elements;
levelize combinational elements;
cluster combinational and sequential elements;
{parallel simulation phase}
obtain the number of cycles for simulation;
for i=0 to number of cycles do

read inputs;
simulate all clusters;
generate outputs;

end for
Figure 4. Parallel Cycle-Based Simulation Algortithm.

simulated level by level, where the level of a gate is defined
as the largest distance from the inputs and the memory
elements of the design. For example, the level of gate G7 in
Figure 2 is 3. The level of a gate also describes its evaluation
order with respect to other gates, that is, a lower level gate is
simulated before a higher level gate. Hence, a level encodes
the dependency relation between gates in the design where
the input of a gate can be the output of another gate from
a lower level. This levelization enables parallelization of
CBS since the simulation of gates in the same level are
independent of each other and can be done in parallel.

Figure 5 displays the design in Figure 2 after levelization
step. Note that there are no latches displayed in the figure
since levelization is done on the combinational portion of
the design. We also assume that all latch values and input
values are given initially. Hence, latches and inputs can be
considered to be in level 0. In the figure, we denote the
present and next latch values by PL# and NL#, respectively.

Figure 5. Levelization of the circuit in Figure 2. The upper levels are
dependent on the lower levels, whereas the gates in the same level are
independent of each other.

B. Clustering of Gates

Once the design is levelized, we can partition both the
combinational and sequential elements into sets. We call
each such set a cluster or block. Our goal is to generate

74

clusters where each cluster can be simulated independently
of other clusters. Then we can simulate each gate in a level
of a cluster by a separate thread since simulation of gates
in the same level are independent of each other.

We used several heuristics for clustering while exploiting
the GPU architectural properties. In particular, we want
to maximize the usage of available CUDA threads. Each
CUDA block of threads can have up-to 512 threads and we
can have up-to 192 blocks in CUDA. Furthermore, CUDA
allows thread synchronization, that is, threads in a block can
be synchronized; however, threads in different blocks cannot
be synchronized. An attempt to distribute all gates such that
each level is simulated by a separate block would require
the synchronization of different blocks since each level has
to be completely simulated before the next level. Hence, this
approach is not possible.

Figure 6 displays the pseudocode of our clustering al-
gorithm. Figure 7 displays application of this algorithm to
the design in Figure 5. First, starting from the gates at the
highest level, we search for the level where the number of
gates in that level is greater than a given threshold value.
We call this level the threshold level. This threshold value is
crucial in obtaining a good partitioning of the gates. We add
all the gates from the highest level down-to but not including
the threshold level into a single cluster (clusterH). Once we
reach the threshold level, we determine the cone of logic of
every gate in that level, where the cone of logic of a gate is
the set of elements encountered during a backtrace from a
gate to inputs or memory elements. For example, the cone
of logic of gate G5 in Figure 5 includes G5, G4, G3, G2.
Each cone of logic is a cluster for our purposes, named
clusterGi for each gate Gi in threshold level. Note that
since gates can be in the cone of logic of more than one
cluster they may need to be duplicated for each cluster. This
duplication allows us to simulate each cluster independent
of other clusters. After these steps, there may still be some
gates that are not part of any cluster. In particular, there
may be combinational gates that are not in the cone of logic
of any gate at the threshold level. For example, gate G8 is
one such gate. Hence, we add such gates to clusterR. Also,
we add all sequential elements to a separate clusterS. At
the end of the clustering algorithm we have the following
clusters, clusterH , clusterGi for each gate Gi in threshold
level, clusterR, and clusterS.

Although most clusters can be simulated independent of
each other, there is a dependency among some clusters.
In particular, clusterH can be simulated only after all
clusterGi have been simulated. This is because all clusteGi
are in the cone of logic for gates in clusterH , hence
clusterH is dependent on all clusterGi. Furthermore,
clusterS for sequential elements can be simulated only after
all combinational clusters have been simulated since the next
latch values can only be calculated after all combinational
clusters have been simulated.

level = the highest level of gates;
repeat

if number of gates in level > threshold then
add the gates from the highest level until the
current level to clusterH;
break; {found threshold level}

end if
level = level - 1;

until level = 0;
if level = 0 then

update threshold value and rerun above steps;
end if
for i=1 to number of gates in level do

add the cone of logic for gate Gi to clusterGi;
end for
add remaining combinational gates to clusterR;
add sequential gates to clusterS;

Figure 6. Clustering Algortithm

In Figure 7, we apply clustering algorithm on the design
in Figure 5. We assume that the threshold value is 2, in
which case the top level (level 3) automatically becomes
the threshold level. Clusters 1 and 2 are obtained by finding
the cone of logic of gates in level 3. Whereas, cluster 3
is a cluster of remaining combinational elements. Similarly,
there is a cluster 4 that includes all latches.

Figure 7. Clustering on the levelized design in Figure 5. Distinct clusters
are independent of each other. However, there is a dependency between
levels within a cluster.

In Figure 8, there is a conceptual view of clustering op-
eration. Each triangle represents a block/cluster. The cluster
above the threshold level is denoted by clusterH in the
algorithm. The intersections of clusters represent the design
elements that are duplicated due to having common cone of
logic elements. This duplication is necessary to ensure the
simulation independence between the clusters.

In determining clusters, we first considered clusters start-
ing from the primary outputs instead of starting from the

75

Figure 8. Visualizing Clustering. Threshold level is the level where the
number of gates is at least the number specified by clustering threshold.
The upper corner of each triangular represents a gate in the threshold level.

highest level of gates. However, since designs can have vary-
ing number of outputs ranging from a single output to several
thousands, such clusters lead to inefficient distribution of
gates and drastically increase the complexity of balancing
step. Whereas, we can control the distribution of gates by
changing the threshold value and obtain better performance.

Partitioning of gates should generate a balanced distribu-
tion of gates into blocks of similar size in order to increase
efficiency. Moreover, the number of blocks should be neither
too low nor too high. If it is too low, then our algorithm
works similar to the sequential simulation. If it is too high,
then more gates may need to be duplicated among clusters
and computation overhead could increase.

C. Parallel Simulation Phase

obtain the number of cycles for simulation;
for i=0 to number of cycles do

execute test-bench on the host and generate inputs
for the design;
transfer inputs from host to device;
simulate all clusters on the device and generate
outputs;
transfer outputs to the host;

end for
Figure 9. Parallel Simulation Phase

Parallel simulation phase consists of several steps that can
be seen in Figure 9. During each cycle, input values are
transferred from host to device. The inputs are essentially
generated by executing the test-bench on the host. In our
experiments, we mainly used random test-benches, hence
the input generation could be optimized as described in the

next section. Once the inputs are ready, all clusters can be
executed by executing a kernel function while respecting
the cluster dependency explained above. An execution of a
block with combinational elements proceeds level by level
and after each level is simulated the threads of the block
synchronize using a barrier. This process continues until all
levels are completed. Blocks fetch relevant design data and
input values from device memory before simulation of the
levels and transfer output values and next latch values to the
device memory after the simulation of the clusters. At the
end of the cycle, output values are transferred from device to
host. In particular, we stored the design structure, primary
inputs and outputs and latches in the device memory and
frequently accessed data structures such as intermediate and-
gate values of a block in the shared memory.

D. CUDA Optimizations

We applied several optimization methods to increase
performance of our algorithms. To develop an effective
CUDA program, one needs to have knowledge of the GPU
architecture such as shared memory bank conflicts and
memory transfer overhead. Communication overhead is a
major cost. We exploited CUDA’s shared memory, register
and pinned memories for our implementation.

We decreased the number of costly operations such as
multiplication and division. In particular, if the same mul-
tiplication or division operation has to be done at every
iteration of a loop, the outcome of this operation is done
before the loop and recorded in a register to be used by
other threads.

In CUDA, one can allocate memory space in host
memory dynamically by using CudaMallocHost func-
tion instead of the ordinary C malloc function. This
uses the pinned (paged-locked) memory. Allocating mem-
ory with CudaMallocHost increases the performance of
CudaMemcpy operation. We used these functions to allo-
cate data structures for our designs.

For designs with random input generation (random test-
benches), we moved the test-bench code into the GPU and
enabled parallel input generation. This removes the commu-
nication need between CPU and GPU. For designs without
a random input generation, we used another optimization
method where the inputs of the design and outputs of the
design are not transferred between GPU and CPU during
every cycle, rather these data transfers are done in bulks
such as after every 10000 cycles. Although this optimization
increases the data size to be copied between the host and
the device, our experiments have proven that decreasing the
number of CudaMemcpy operations is more critical than
increasing the data size.

One of the most important optimizations for CUDA
programming is to make effective use of shared memory.
Fetching a variable from device memory requires 400-600
cycles, whereas fetching it from the shared memory requires

76

Design Inputs Outputs And-Gates Latches Levels Clusters
ldpc-encoder 1723 2048 218961 0 19 288

des-perf 17850 9038 78299 8808 19 373
wb-conmax 1130 1416 47853 770 26 261
pci-bridge32 162 207 22784 3359 29 146

key-orig 382 82 24182 33 75 22
ethernet 98 115 69684 10544 31 364
vga-lcd 89 109 126711 17079 23 145

Table II
EXPERIMENTAL TEST CASES

only a few cycles. However, each shared memory for a
CUDA block is limited by 16 KB. During the execution
of a cluster, we copied the most frequently accessed data
structures to the shared memory such as intermediate and-
gate values in a cluster. Also, since we use AIGER format
with only a single type of combinational gate (an and-gate),
we do not need to store the truth table for other types of
complex gates in the shared memory, wasting valuable space.

V. EXPERIMENTAL RESULTS

We validated the effectiveness of our GPU based parallel
CBS algorithm on several test cases. We used test cases
from IWLS [18], OpenCores [19] and AIGER [4]. These
test cases ranged from a combinational ldpc encoder (low
density parity check encoder), to complex sequential designs
such as des-perf (triple DES optimized for performance),
wb-conmax (wishbone conmax IP core), pci-bridge32, eth-
ernet, and vga-lcd (wishbone compliant enhanced vga/lcd
controller). These test cases either had their own test benches
or we generated random test benches for them. Table II
displays the list of test cases that we used in our experiments
and their design characteristics. For some test cases, we
generated AIGER format using ABC tool [20].

We performed our experiments on a dual quad core Intel
Xeon (2.27GHz) processor with 32GB of memory and a
CUDA–enabled NVIDIA Quadro FX3800 GPU with 1 GB
device memory and 24 multiprocessors each with 8 cores.

In Table III, we demonstrate our experimental results.
Column Cycles denotes the number of cycles that the design
has been simulated. Column SEQ denotes the results for
sequential simulation using the default simulator that is
available with AIGER format [4]. Column PAR denotes
the results for our parallel simulation algorithm. Column
Speedup denotes the speedup of parallel algorithm over
the sequential algorithm. The times do not include the
compilation phase in both cases but include the time required
to transfer the data between the GPU and the CPU.

Different speedups are expected for logic simulation due
to the fact that logic simulation is heavily influenced by the
circuit structure. We obtained speedups ranging from 1.7x to
5x. We obtained the best speedup for ldpc-encoder design,
and when we investigated this design, we observed that the
gates are almost equally distributed to the blocks. We also

observed that when the size of the design gets bigger, the
speedup ratio also gets bigger. We simulated the designs
for different number of cycles ranging from 100K to 1M.
The speedups were similar when the number of cycles were
increased.

From Table II, we can see that the number of outputs and
the number of clusters that gives the best results can be very
different from each other. Hence, a clustering algorithm that
considers the outputs as cluster heads could result in slower
execution times. We also experimented with the threshold
values. We observed that the threshold value is dependent
on the circuit structure as well. For example, for key orig
testcase the execution time changes almost linearly with the
threshold value. However, this was not the case for other test
cases. We observed that the number of gates in the designs
can be drastically higher using AIGER format than the other
formats. Although our experiments showed that AIGs are
effective in reducing the shared memory size, AIGs may
result in higher number of levels that may lead to execution
overheads.

Our compilation phase may spend more time than the
sequential algorithm in order to find the threshold value.
We note that, in practice, once the optimal threshold values
are obtained, the simulations are run until the design product
is taped-out. Hence, it is worth paying the initial cost.

VI. CONCLUSIONS

We introduced a novel parallel cycle-based simulation
algorithm for digital designs using GPUs. Our algorithm
results in a fast, efficient parallel logic simulator that can
run on commodity graphics cards allowing verified designs
while obtaining significant reduction in the overall design
cycle. Our approach leverages the GPU architecture by
optimizing on low latency memory spaces, and reducing
host and device communications during compilation and
simulation phases of a cycle based simulation algorithm. Our
approach is unique in that we use the AIG representation for
electronic designs that proves to be very efficient for boolean
functions. We obtained speedups for various benchmarks.
Since logic simulation is an activity that continues nonstop
until the design is productized such speedups have a big
impact on the design cycle. Our experiments confirm that the

77

Design Cycles SEQ(sec) PAR(sec) Speedup

ldpc-encoder
100K 382.21 74.79 5.11
500K 1907.79 376.03 5.07
1M 3796.85 749.47 5.07

des-perf
100K 180.62 65.68 2.75
500K 891.84 330.10 2.71
1M 1803.54 660.63 2.73

wb-conmax
100K 94.81 33.96 2.79
500K 473.83 171.08 2.76
1M 936.19 336.76 2.78

pci-bridge32
100K 50.12 21.70 2.30
500K 250.56 105.47 2.37
1M 499.82 209.46 2.38

key-orig
100K 46.47 24.62 1.89
500K 220.14 123.46 1.78
1M 438.53 246.96 1.78

ethernet
100K 155.51 52.89 2.94
500K 778.87 261.23 2.98
1M 1556.11 522.89 2.97

vga-lcd
100K 223.15 45.91 4.86
500K 1118.76 231.57 4.83
1M 2232.56 460.78 4.84

Table III
EXPERIMENTAL RESULTS

circuit structure has a dramatic influence on the performance
of parallel CBS algorithm.

As a future work, we want to investigate other design
formats and develop event-based simulation algorithms that
are also commonly used in the industry. We also want to
develop different clustering and balancing strategies and
experiment with complex industrial test cases.

ACKNOWLEDGMENTS

We would like to thank Alan Mischenko for helping
with AIGER benchmarks. This research was supported by
a Marie Curie European Reintegration Grant within the
7th European Community Framework Programme and BU
Research Fund 09HA101P.

REFERENCES

[1] “NVIDIA CUDA web site,” http://www.nvidia.com/CUDA.

[2] H. Nguyen, Gpu Gems 3. Addison-Wesley Professional,
2007.

[3] B. Catanzaro, K. Keutzer, and B.-Y. Su, “Parallelizing CAD:
a timely research agenda for EDA,” in Proceedings of the De-
sign Automation Conference (DAC). ACM, 2008, pp. 12–17.

[4] “AIGER Format web site,” http://fmv.jku.at/aiger/.

[5] J. F. Croix and S. P. Khatri, “Introduction to GPU pro-
gramming for EDA,” in Proceedings of the International
Conference on Computer Aided Design (ICCAD). ACM,
2009, pp. 276–280.

[6] Y. S. Deng, B. D. Wang, and S. Mu, “Taming Irregular EDA
Applications on GPUs,” in Proceedings of the International
Conference on Computer Aided Design (ICCAD). ACM,
2009, pp. 539–546.

[7] M. L. Bailey, J. V. Briner, Jr., and R. D. Chamberlain,
“Parallel logic simulation of VLSI systems,” ACM Comput.
Surv., vol. 26, no. 3, pp. 255–294, 1994.

[8] G. Meister, “A survey on parallel logic simulation,” Dept.
of Computer Engineering, University of Saarland, Technical
Report, 1993.

[9] K. Hering, “A Parallel LCC Simulation System,” in Proceed-
ings of the International Parallel and Distributed Processing
Symposium (IPDPS), 2002.

[10] C. J. Alpert and A. B. Kahng, “Recent directions in netlist
partitioning: a survey,” Integration, the VLSI Journal, vol. 19,
no. 1-2, pp. 1 – 81, 1995.

[11] F. M. Johannes, “Partitioning of VLSI circuits and systems,”
in Proceedings of the Design Automation Conference (DAC).
ACM, 1996, pp. 83–87.

[12] K. Hering, R. Reilein, and S. Trautmann, “Cone Clustering
Principles for Parallel Logic Simulatio,” in International
Workshop on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems, 2002, pp. 93–100.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron, “A performance study of general-purpose
applications on graphics processors using CUDA,” Journal
of Parallel and Distributed Computing, vol. 68, no. 10, pp.
1370 – 1380, 2008.

[14] “OpenCL web site,” http://www.khronos.org/opencl/.

[15] D. Chatterjee, A. DeOrio, and V. Bertacco, “GCS: High-
performance gate-level simulation with GPGPUs,” in Pro-
ceedings of the Conference on Design Automation and Test
in Europe (DATE), 2009, pp. 1332–1337.

[16] A. Perinkulam, “Logic Simulation using Graphics Proces-
sors,” Master’s thesis, University of Massachusetts Amherst,
2007.

[17] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven
gate-level simulation with GP-GPUs,” in Proceedings of
the Design Automation Conference (DAC), 2009, pp. 557–
562.

[18] “IWLS 2005 Benchmarks,”
http://www.iwls.org/iwls2005/benchmarks.html.

[19] “Opencores Benchmarks,” http://www.opencores.org.

[20] “ABC web site,” http://www.eecs.berkeley.edu/˜alanmi/abc/.

78

