
Int J Parallel Prog (2011) 39:639–661
DOI 10.1007/s10766-011-0164-7

Speeding Up Cycle Based Logic Simulation Using
Graphics Processing Units

Alper Sen · Baris Aksanli · Murat Bozkurt

Received: 15 October 2010 / Accepted: 30 December 2010 / Published online: 22 February 2011
© Springer Science+Business Media, LLC 2011

Abstract Verification has grown to dominate the cost of electronic system design,
consuming about 60% of design effort. Among several verification techniques, logic
simulation remains the major verification technique. Speeding up logic simulation
results in great savings and shorter time-to-market. We parallelize logic simulation
using Graphics Processing Units (GPUs). In the past, GPUs were special-purpose
application accelerators, suitable only for conventional graphics applications. The new
generations of GPU architecture provide easier programmability and increased gener-
ality while maintaining the tremendous memory bandwidth and computational power
of traditional GPUs. We develop a parallel cycle-based logic simulation algorithm that
uses And Inverter Graphs (AIGs) as design representations. AIGs have proven to be an
effective representation for various design automation applications, and we obtain sim-
ilar benefits for speeding up logic simulation. We develop two clustering algorithms
that partition the gates in the designs into independent blocks. Our algorithms exploit
the massively parallel GPU architecture featuring thousands of concurrent threads,
fast memory, and memory coalescing for optimizations. We demonstrate up-to 5x and
21x speedups on several benchmarks using our simulation system with the first and
second clustering algorithms, respectively. Our work ultimately results in significant
reduction in the overall design cycle.

Keywords Graphics processing units (GPU) · Parallel logic simulation ·
Cycle based simulation · And inverter graph (AIG)

This article is an extended version of a conference paper that appeared at ISPDC 2010 [27].

A. Sen (B) · B. Aksanli · M. Bozkurt
Department of Computer Engineering, Bogazici University, 34342 Istanbul, Turkey
e-mail: alper.sen@boun.edu.tr

123

640 Int J Parallel Prog (2011) 39:639–661

1 Introduction

Complexity of electronic designs have been rapidly growing. Billions of transistors
are commonly placed in designs to generate higher performance. Multicore and many
core systems provide the performance by handling more work in parallel. However,
the complexity in electronic designs poses a great challenge for building such systems,
where designs continue to be released with latent bugs. Functional design verification
is the task of establishing that a given design accurately implements the intended
functional behavior (specification). Today, design verification has grown to dominate
the cost of electronic system design, in fact, consuming about 60% of design effort
[5]. Among several verification techniques, logic simulation remains to be the major
verification technique due to its applicability to real designs and its relative ease of
use. However, logic simulation of designs with millions of components is time con-
suming and has become a bottleneck in the design process. Any means to speedup
logic simulation results in productivity gains and faster time-to-market.

We observe that electronic designs exhibit a lot of parallelism that can be exploited
by parallel algorithms. In fact, there are parallel electronic design automation algo-
rithms for almost all stages in the implementation of an electronic design such as logic
optimization, floor-planning, routing, and physical verification stages. In this paper,
we focus on parallelization of logic simulation of electronic designs using Graphics
Processing Units (GPUs).

In the past, Graphics Processing Units (GPUs) were special-purpose application
accelerators, suitable only for conventional graphics applications. Nowadays, GPUs
are routinely used in applications other than graphics such as computational biol-
ogy, computational finance and electronic designs, where huge speedups have been
achieved [22]. This is a result of the availability of extremely high performance hard-
ware (for example, a GTX 480 GPU provides 1.35 Tflops with 480 cores and is under
$500), and the availability of general purpose programming models such as Com-
pute Unified Device Architecture (CUDA) by NVIDIA [13]. CUDA is an extension
to C language and is based on a few abstractions for parallel programming. CUDA
has accelerated the development of parallel applications beyond that of the original
purpose of graphics processing.

There are two main types of logic simulation; Cycle-Based Simulation (CBS) and
Event-Based Simulation (EBS). In CBS, the evaluation schedule of gates in the design
for each step of simulation is determined once at the compilation time of the simulator.
EBS has a more complicated scheduling policy where a gate is simulated only if at least
one of its input values have changed. Both CBS and EBS are commonly used in the
industry. In this paper, we work with CBS since it has a less complicated static sched-
uling policy that is amenable to better parallelization. However, we also note that logic
simulation has been classified as the most challenging Computer Aided Design pattern
to parallelize [7]. The ratio of communication (between gate and gate) to Boolean eval-
uation is high. Since the communication pattern of logic simulation often defy a pat-
tern, it is difficult to assign elements to processors so that communicating elements are
always close. High performance loss due to communication overhead is reported [26].

Logic simulation proceeds in two phases; compilation and simulation. The compi-
lation phase is part of any modern simulator and is required to convert the design into

123

Int J Parallel Prog (2011) 39:639–661 641

an appropriate form for the simulation phase. Our GPU based solution is also com-
posed of these two phases. In the compilation phase, we perform several operations
namely combinational logic extraction, levelization, clustering, and balancing opera-
tions. This phase has several GPU architecture dependent optimizations such as the
efficient usage of shared memory and memory coalescing. Levelization helps deter-
mine the dependency between gates, where gates in the same level can be simulated in
parallel. Clustering helps partition the design into a collection of smaller parts where
each part can be simulated independent of other parts. Balancing helps optimize the
usage of threads for a SIMD instruction. These operations are necessary because in
a gate level design, certain gates could have hundreds or thousands of fanouts while
most will have a few fanouts resulting in irregular data access patterns. Clustering
and balancing help organize access patterns for effective simulation. The simulation
phase is where thousands of threads are available to simulate the compiled design
in parallel. We use several optimizations in simulation phase in order to reduce the
communication overhead between the GPU and the CPU. In both phases, we exploit
the GPU memory resources as efficiently as possible in order to have low latency.

Our design representation for logic simulation is different from the other design
representations. We use And-Inverter Graphs (AIGs), in particular we use the AIGER
format [2]. AIG is an efficient representation for manipulation of boolean functions. It
is increasingly used in logic synthesis, technology mapping, verification, and boolean
satisfiability checking [6,10,20,21,28]. However, to the best of our knowledge, our
work is the first GPU based electronic design automation solution using AIGs. Since
we use AIGs with only a single type of combinational gate (and-gate), our algorithms
can efficiently use the limited low latency memory spaces provided by the GPU.

We developed two clustering algorithms. The first one clusters gates using a given
threshold, and the second one improves clustering with that of merging and balancing
steps and incorporates memory coalescing and efficient utilization of shared mem-
ory. We validated the effectiveness of our parallel CBS algorithm for both types of
clustering with several benchmarks from IWLS, and AIGER [2,17,24]. We compared
our parallel CBS algorithm with that of a sequential CBS algorithm. Our experiments
show that parallel CBS can speedup the simulation of designs over the sequential algo-
rithm. In particular, we obtained up-to 5x speedup with the first clustering algorithm
and up-to 21x with the second clustering algorithm. We obtain better speedups with
larger circuits.

This paper is organized as follows. In the next section, we give an overview of related
work in logic simulation and General Purpose computation on GPUs (GPGPU). We
then describe background in CUDA, AIG format and logic simulation in Sect. 3. In
Sect. 4, we describe our parallel CBS algorithm together with two clustering algo-
rithms and CUDA optimizations. Our experiments are in Sect. 6. Finally, conclusions
and future work are described.

2 Related Work

Catanzaro et al. [7] explain design patterns for parallelization in Computer Aided
Design (CAD). The authors consider 17 different CAD algorithms and partition

123

642 Int J Parallel Prog (2011) 39:639–661

these algorithms in three categories; graph algorithms, branch and bound search,
and linear algebra. They also state that graph algorithms in CAD (of which logic
simulation is a member) are the hardest to parallelize among these categories. Sim-
ilarly, CAD case studies of GPU acceleration can be found in [12]. Some of these
case studies are spice simulation, fault simulation, static timing analysis, boolean
satisfiability, fault dictionary computation, and power grid analysis. The authors
describe optimization techniques for irregular EDA applications on GPUs in [14].
In particular, they make use of memory coalescing and shared memory utiliza-
tions that improve the speedup of sparse matrix vector product and breadth first
search.

There has been a lot of work on parallel logic simulation using architectures other
than GPUs. There are several surveys on parallel logic simulation [4,19]. In particular,
cycle-based simulation approaches are used by IBM and others [15]. The simulation
algorithms in these works are aimed at loosely coupled processor systems.

Different partitioning algorithms for electronic designs are described in [3,18].
Some of these algorithms are based on performance, layout, clustering, network
flow, and spectral methods. Our partitioning approach is similar to cone clustering
described in [16], where a fanin cone of a circuit element embodies an area of com-
binational logic that has the potential to influence signal values provided by that
element.

Several general purpose GPU applications can be found in [13,22]. The application
domain ranges from physics to finance and the medical field. The work in [11] gives a
performance study of general purpose applications using CUDA and compares them
with that of applications written using OpenMP.

There is another general purpose programming environment for GPUs named
OpenCL. OpenCL [23] is a relatively new standard that is very similar to CUDA in
that it is also an extension of C language. CUDA is specific to NVIDIA GPUs, whereas
OpenCL can be run on different architectures and gives you portability at the expense
of potentially sub-optimal performance for any specific platform. Also, CUDA is a
more mature environment with high-performance libraries and accompanying tools
like debuggers and profilers.

Our CBS algorithm is most similar to the work by Chatterjee et al. [9]. However,
there are several differences. We use AIGs as gate level representation whereas they
support a generic library of gates. AIGs allow us to efficiently use the limited low
latency memory spaces. We use a threshold value in our first clustering algorithm,
whereas they start clusters from the primary outputs. We fix the number of blocks
in our second clustering algorithm in order to maximize parallel thread execution.
We encode variables in order to better utilize shared memory and we explicitly use
memory coalescing, whereas these are not used in [9].

There is an earlier logic simulation algorithm using GPUs by Perinkulam [25].
However, this algorithm does not provide performance benefits since they do not opti-
mize data transfer between GPU and CPU, use a different partitioning approach, and
do not use the general purpose programming language CUDA. There is also a recent
work on event-based simulation algorithm, which is also a commonly used simulation
technique in the industry, using CUDA [8].

123

Int J Parallel Prog (2011) 39:639–661 643

3 Background

In this section, we are going to present background on CUDA programming, AIGs,
and sequential cycle based logic simulation of electronic designs.

3.1 CUDA Programming

Compute Unified Device Architecture (CUDA) is a small C library extension devel-
oped by NVIDIA to expose the computational horsepower of NVIDIA GPUs [13].
GPU is a compute device that serves as a co-processor for the host CPU. CUDA
can be considered as an instance of widely used Single Program Multiple Data
(SPMD) parallel programming models. A CUDA program supplies a single source
code encompassing both host and device code. Execution of this code consists of
one or more phases that are executed either on the host or device. The phases that
exhibit little amount of parallelism are executed on the host and rich amount of
parallelism are executed on the device. The device code is referred to as kernel
code.

The smallest execution units in CUDA are threads. Thousands of threads can work
concurrently at a time. GPU has its own device memory and provides different types
of memory spaces available to threads during their execution. Each thread has a private
local memory in addition to the registers allocated to it. A group of threads forms a
CUDA block. A CUDA block can have at most 512 threads, where each thread has
a unique id. A group of blocks forms a CUDA grid. Each thread block has a shared
memory visible to all threads of the block within the lifetime of the block. Access to
shared memory is fast like that of a register. Threads in the same block can synchro-
nize using a barrier, whereas threads from different blocks can not synchronize. Each
thread has access to the global device memory throughout the application. Access to
the global memory is slow and around 400–600 cycles. There are also special memory
spaces such as texture, constant, and page-locked (pinned) memories. All types of
memory spaces are limited in size, and should therefore be handled carefully in the
program.

Figure 1 displays general NVIDIA CUDA architecture with N streaming mul-
tiprocessors composed of M streaming processors. For an NVIDIA FX3800 GPU,
N = 24 and M = 8. Each multiprocessor can execute 768 threads in parallel and
shared memory size is limited where each multiprocessor can have 16 KB of shared
memory.

3.2 And-Inverter Graph (AIG)

And-Inverter Graph (AIG) is a directed, acyclic graph that represents a structural
implementation of the logical functionality of a design or circuit. AIGER format is an
implementation of AIGs [2]. An AIG is composed of two-input and-nodes (combi-
national elements) representing logical conjunction, single input nodes representing
memory elements (latches, sequential elements), nodes labeled with variable names

123

644 Int J Parallel Prog (2011) 39:639–661

Fig. 1 CUDA hardware and memory architecture (Source: NVIDIA CUDA programming Guide [13])

representing inputs and outputs, and edges optionally containing markers indicating
logical negation. We refer to and-nodes and latches as gates. AIG is an efficient rep-
resentation for manipulation of boolean functions.

The combinational logic of an arbitrary Boolean network can be factored and
transformed into an AIG using DeMorgans rule. The following properties of
AIGs facilitate development of robust applications in synthesis, mapping, and
formal verification. Structural hashing ensures that AIGs do not contain struc-
turally identical nodes. Inverters are represented as edge attributes. As a result,
single-input nodes representing inverters and buffers do not have to be created.
This saves memory and allows for applying DeMorgans rule on-the-fly, which
increases logic sharing. The AIG representation is uniform and fine-grain, result-
ing in a small, fixed amount of memory per node. The nodes are stored in
one memory array in a topological order, resulting in fast, CPU-cache-friendly
traversals.

There has been a growing interest in AIGs as a functional representation for a
variety of tasks in Electronic Design Automation (EDA) such as logic synthesis,
technology mapping, verification, and equivalence checking [6,10,20,21,28]. Espe-
cially, the recent emergence of efficient boolean satisfiability (SAT) solvers that use
AIGs instead of the Binary Decision Diagrams (BDD) has made AIGs popular in
EDA. A tool called ABC [6] features an AIG package, several AIG-based synthe-
sis and equivalence-checking techniques, as well as an implementation of sequential
synthesis.

Figure 2 displays an example gate level design. In this figure, and-gates are iden-
tified as G#, where # stands for the unique gate number; and latches are identified as
L#, where # stands for the unique latch number. i# and o# stand for (primary) inputs
and (primary) outputs, respectively.

123

Int J Parallel Prog (2011) 39:639–661 645

Fig. 2 An example gate level
design

3.3 Sequential Cycle-Based Simulation

Cycle-based simulation (CBS) is a commonly used logic design simulation technique.
Given a sequence of input vectors, the goal is to generate the output vectors of the
design. CBS is a form of time driven or compiled mode simulation because the evalu-
ation schedule of gates for each simulation step is determined once at the compilation
time of the simulator. The time in CBS is not a physical time rather an integer that
denotes the current cycle. CBS represents a fast alternative to event-based simulation.
In CBS, logic values of all gates are calculated at clock defined cycle boundaries,
whereas event-based simulators calculate logic values of a gate if a change occurs at
the inputs of that gate. This property of CBS may bring some redundancy since inputs
of a combinational element may not change at every cycle. However, it eliminates
costly management of scheduling of events as in event-based simulation resulting in
efficient implementation rules and better performance.

Algorithm 1 displays a pseudocode for a general sequential CBS algorithm. In our
case, since we use AIGs, the only combinational elements are and-gates. At each step,
both combinational and sequential elements are evaluated. The primary output val-
ues are calculated at every cycle using the current values of sequential elements and
primary inputs. The combinational elements are evaluated generating the next latch
values. The combinational elements can be simulated in any order as long as the inputs
of an and-gate are ready for the current cycle. An optimization at this step would be to
levelize the combinational elements and simulate them level by level, which we will
explain in detail in the next sections. Next, sequential elements are simulated. The next
latch values are stored in a second set of latch variables that will take the role of the

123

646 Int J Parallel Prog (2011) 39:639–661

Algorithm 1 Sequential Cycle-Based Simulation Algorithm
Input: circuit, number of simulation cycles num, test-bench
Output: output values
1: for i = 0 to num do
2: execute test-bench and generate primary input values;
3: simulate all combinational elements;
4: simulate all sequential elements;
5: generate primary output values using primary input values and the current values of sequential ele-

ments;
6: end for

Table 1 Cycle-based
simulation of design in Fig. 2

Cycle Inputs Latches Outputs

i1i2i3i4i5i6i7i8 L1 L2 L3 o1o2

0 11111111 000 00

1 11111111 110 01

2 11111111 111 11

present (current) latch variables in the next cycle. For example, assuming that the latch
values are initially all zero, the outputs of the design in Fig. 2 with respect to a given
input sequence for three cycles is displayed in Table 1. In cycle 0, primary outputs are
00, whereas the next latch values are 110 based on the given primary inputs. In cycle
1, the next latch values of cycle 0 become the current latch values of cycle 1, that is,
current latch values are 110, hence the primary outputs become 01. The next latch
values become 111 based on the given primary inputs. In cycle 2, the next latch values
of cycle 1 become the current latch values of cycle 1, that is, current latch values are
111, hence the primary outputs become 11.

4 Parallel Cycle-Based Simulation Using GPUs

Algorithm 2 displays the pseudocode for our parallel CBS algorithm. Our algorithm
has compilation and simulation phases. In compilation phase, we extract combinational
elements of a design since we can simulate combinational and sequential elements
separately as described in Algorithm 1. Next, we levelize the extracted combinational
design in order to simulate elements at a level in parallel. Then, we partition the lev-
elized design into clusters, which are sets of gates that we will define later. We then
balance these clusters in order to maximize CUDA thread usage and map these bal-
anced clusters to CUDA blocks. We developed two different clustering algorithms
that we will explain below. After obtaining CUDA blocks, we are ready for parallel
simulation. In parallel simulation phase, we execute the test-bench in order to generate
primary input values at each cycle, next we transfer these values to the GPU. Then, we
simulate in parallel CUDA blocks for combinational and sequential elements. Below
we provide the details of our algorithm.

123

Int J Parallel Prog (2011) 39:639–661 647

Algorithm 2 Parallel Cycle-Based Simulation Algorithm
Input: circuit, number of simulation cycles num, test-bench
Output: output values

// compilation phase
1: extract combinational elements;
2: levelize combinational elements;
3: cluster combinational and sequential elements;
4: balance clusters;

// parallel simulation phase
5: for i = 0 to num do
6: execute test-bench on the host and generate primary input values;
7: transfer inputs from the host to the device;
8: simulate all clusters on the device and generate primary output values;
9: transfer outputs from the device to the host;
10: end for

Fig. 3 Levelization of the circuit in Fig. 2. The upper levels are dependent on the lower levels, whereas
the gates in the same level are independent of each other

4.1 Levelization

In CBS, we can simulate combinational and sequential elements separately. A speed-
up technique for the simulation of combinational elements is to simulate them level
by level, where the level of a gate is defined as the largest distance from the primary
inputs and the sequential elements of the design. For example, the level of gate G7
in Fig. 2 is 3. The level of a gate also describes its evaluation order with respect to
other gates, that is, a lower level gate is simulated before a higher level gate. Hence, a
level encodes the dependency relation between gates in the design where the input of
a gate can be the output of another gate from a lower level. This levelization enables
parallelization of CBS since the simulation of gates in the same level are independent
of each other and can be done in parallel.

Figure 3 displays the design in Fig. 2 after levelization step. Note that there are no
latches displayed in the figure since levelization is done on the combinational extrac-
tion of the design. We also assume that all latch values and primary input values are
given initially. Hence, latches and inputs can be considered to be in level 0. In the
figure, we denote the present and next latch values by PL# and NL#, respectively.

123

648 Int J Parallel Prog (2011) 39:639–661

4.2 Clustering and Balancing of Gates

Once the design is levelized, we can partition both the combinational and sequential
elements into sets. We call each such set a cluster. Our goal is to generate clusters
where each cluster can be simulated independently of other clusters. Then we can
simulate each gate in a level of a cluster by a separate thread since simulation of gates
in the same level are independent of each other.

We used several heuristics for clustering while exploiting the GPU architectural
properties. In particular, we want to maximize the usage of available CUDA threads.
Furthermore, CUDA allows thread synchronization, that is, threads within a block
can be synchronized; however, threads in different blocks cannot be synchronized.
An attempt to distribute all gates such that each level is simulated by a separate block
would require the synchronization of different blocks since each level has to be com-
pletely simulated before the next level. Hence, this approach is not possible.

4.2.1 First Clustering Algorithm

Figure 4 is a conceptual view of the result of our first clustering algorithm. Each
triangle represents a cluster. We use a threshold value, explained below, in order to
control the number of CUDA blocks. The intersections of clusters represent the design
elements that are duplicated. This duplication is necessary to ensure the simulation
independence between the clusters.

Algorithm 3 displays the pseudocode of our first clustering algorithm. In this algo-
rithm we assign each cluster to a CUDA block. First, starting from the gates at the
highest level, we search for the level where the number of gates in that level is greater

Fig. 4 Visualizing clustering
Algorithm 1. The threshold level
is the level where the number of
gates is at least the number
specified by clustering
threshold. The top corner of
each triangle represents a gate
in the threshold level

123

Int J Parallel Prog (2011) 39:639–661 649

Algorithm 3 Pseudocode for First Clustering Algorithm
Input: levelized circuit, threshold value threshold
Output: cluster of gates
1: level = the highest level of gates in circuit;
2: repeat
3: if number of gates in level > threshold then
4: add the gates from the highest level until the current level to cluster H ;
5: break; // found threshold level
6: end if
7: level = level − 1;
8: until level = 0;
9: if level = 0 then
10: update threshold value and rerun above steps;
11: end if
12: for i = 1 to number of gates in level do
13: add the cone of logic for gate Gi to clusterGi ;
14: end for
15: cluster Rem = ⋃

remaining combinational gates;
16: cluster Seq = ⋃

sequential gates;

than or equal to a given threshold value. We call this level the threshold level. This
threshold value is crucial in obtaining a good partitioning of the gates. We add all the
gates from the highest level up-to but not including the threshold level into a single
cluster (cluster H). Once we reach the threshold level, we determine the cone of logic
of every gate in that level, where the cone of logic of a gate is the set of elements encoun-
tered during a backtrace from a gate to inputs or sequential elements. For example,
the cone of logic of gate G5 in Fig. 3 includes G5, G4, G3, G2. Each cone of logic is
a cluster for our purposes, named clusterGi for each gate Gi in threshold level. Note
that since gates can be in the cone of logic of more than one cluster they may need
to be duplicated for each cluster. This duplication allows us to simulate each cluster
independent of other clusters. After these steps, there may still be some gates that are
not part of any cluster. In particular, there may be combinational gates that are not in
the cone of logic of any gate at the threshold level. For example, gate G8 is one such
gate. Hence, we add such gates to cluster Rem. Also, we add all sequential elements
to a separate cluster Seq. At the end of the clustering algorithm we have the following
clusters, cluster H, clusterGi for each gate Gi in threshold level, cluster Rem, and
cluster Seq.

Although most clusters can be simulated independent of each other, there is a depen-
dency among some clusters. In particular, cluster H can be simulated only after all
clusterGi have been simulated. This is because all clusterGi are in the cone of logic
for gates in cluster H , hence cluster H is dependent on all clusterGi . Furthermore,
cluster Seq for sequential elements can be simulated only after all combinational
clusters have been simulated since the next latch values can only be calculated after
all combinational clusters have been simulated.

In Fig. 5, we apply clustering algorithm on the design in Fig. 3. We assume that the
threshold value is 2, in which case the top level (level 3) automatically becomes the
threshold level. Clusters 1 and 2 are obtained by finding the cone of logic of gates in
level 3. Whereas, cluster 3 is a cluster of remaining combinational elements. Similarly,

123

650 Int J Parallel Prog (2011) 39:639–661

Fig. 5 Clustering Algorithm 1 on the levelized design in Fig. 3. Distinct clusters are independent of each
other. However, there is a dependency between levels within a cluster

Fig. 6 Visualizing clustering
Algorithm 2

there is a cluster 4 that includes all latches. Finally each cluster is assigned to a CUDA
block.

It is clear that we can control the number of CUDA blocks using the threshold
value with this clustering algorithm. However, this becomes a manual effort and some
designs may not have as many gates as specified in the threshold value or may have
many more gates than the threshold value. Furthermore, clustering of remaining gates
needs extra effort of searching and finding out the gates that are not part of any cluster.
In such cases, the first clustering approach may not be useful. Hence, we developed
an optimized approach that allows us to better control the number of CUDA blocks,
the shared memory and ultimately obtain better speedups.

123

Int J Parallel Prog (2011) 39:639–661 651

4.2.2 Second Clustering Algorithm

In this algorithm, we build clusters starting from the primary outputs and latches
instead of starting from the user given threshold level as in the first clustering algo-
rithm (Fig. 6). This allows us not to have any remaining gates as was the case above.
Also, since designs can have varying number of outputs and latches, the number of
clusters and the sizes of clusters can vary. This necessitates further steps to optimize
thread usage. For this purpose, we develop new steps for merging and balancing of
clusters. This avoids assigning every cluster to a CUDA block as in the previous algo-
rithm, rather we reshape clusters into an optimized format then assign those clusters
to CUDA blocks.

Algorithm 4 shows our second clustering algorithm. We next describe the steps in
the algorithm in greater detail.

– Step 1. Obtain clusters In this algorithm we do not assign each cluster to a CUDA
block as was done in the previous clustering algorithm. Rather, our goal is to build
many clusters starting from primary outputs and latches. We add the cone of logic
of both primary outputs and latches and form clusters, named cluster O L . How-
ever, when going back from a gate, we stop at the latches. At the end of this step, the
number of clusters is the sum of the number of primary outputs and the number of
latches. Figure 7 displays application of this step on the levelized design in Fig. 3.

– Step 2. Merge clusters After the above step is completed, there may be clusters
with an imbalance in distribution of gates to clusters. Hence, we need to merge

Algorithm 4 Pseudocode for Second Clustering Algorithm
Input: levelized circuit, number of CUDA blocks num Blocks
Output: merged and balanced cluster of gates

// Step 1. obtain clusters
1: for each primary output or latch O L do
2: add the cone of logic for O L to cluster O L;
3: end for

// Step 2. merge clusters
4: gate_limit = total number of gates in all cluster O L/number of blocks;
5: compute overlaps of all possible pairs of clusters;
6: for i = 1 to num Blocks do
7: let clusterC L be an arbitrary unmarked cluster and mergedC L[i] = ∅;
8: mergedC L[i] = mergedC L[i] ∪ clusterC L;
9: mark clusterC L;
10: repeat
11: clusterC Li = an unmarked cluster with maximum overlap with clusterC L;
12: mergedC L[i] = mergedC L[i] ∪ clusterC Li ;
13: mark clusterC Li ;
14: until number of gates in mergedC L[i] reaches gate_limit ;
15: delete duplicate gates in each mergedC L[i];
16: end for

// Step 3. balance merged clusters
17: level_width = average width of all merged clusters;
18: for each merged cluster mergedC L[i] do
19: move gates in mergedC L[i] such that the cluster has a level_width wide rectangular shape;
20: end for

123

652 Int J Parallel Prog (2011) 39:639–661

Fig. 7 Clustering Algorithm 2 before merging and balancing steps

clusters in order to reduce this imbalance in the sizes of the clusters. This step will
also allow us to optimize the usage of shared memory as we describe below. We
respect the following conditions for merging clusters.

1. The number of merged clusters is a given preset number of CUDA blocks.
2. The size of a merged cluster may not exceed a certain limit, called gate_limit .

The gate_limit is obtained by dividing the total number of gates in all clusters
(including duplicate gates) by the number of CUDA blocks.

3. We merge clusters with maximum number of common gates (overlap).

We choose the preset number of CUDA blocks according to the properties of
the circuit and the CUDA device at hand. In our case, we chose to generate 48
CUDA blocks for large circuits. This is because each multiprocessor can execute
768 threads in parallel and given that a CUDA block can not have more than 512
threads, we allocate 384 threads to two blocks for each multiprocessor for max-
imum thread utilization. For a CUDA architecture with 24 multiprocessors, this
results in 48 blocks in total. This preset number of blocks is fine for most industrial
designs as can be seen from experiments. However, for designs with fewer number
of gates, fewer number of blocks can be allocated such as 12 or 24.
Next, we use a simple heuristic to merge clusters. We compute the overlaps of
all possible pairs of clusters in a two-dimensional matrix. Then, for each CUDA
block, we start with an arbitrary cluster and add the cluster with the maximum
overlap to it. This addition procedure continues until we reach a given gate_limit
for each merged cluster.
After merging the clusters based on the above heuristic, there may be duplicate
gates in merged clusters, so we delete these duplications. Figure 8 displays the
effect of the merging step.

– Step 3. Balance merged clusters At the end of the above step, we obtain merged
clusters that are of triangular shape. In a triangular shape cluster, more threads will
become idle as the level increases during execution, since there are more gates at
the lower levels. Our goal is to utilize available threads in the most efficient way
such that all threads will approximately have the same computation burden for

123

Int J Parallel Prog (2011) 39:639–661 653

Fig. 8 Merging and balancing clusters results in using all available threads efficiently at all levels

each level. A uniform shape like a rectangular allows us to have the same number
of gates at each level. Figure 8 displays the effect of the balancing step.
In order to balance merged clusters, we compute the average width of all merged
clusters, called level_width. This width will give us the number of threads that
should be allocated to each CUDA block. We make sure that this is a multiple of
16 since for coalesced memory access half warp (16 threads) can work at the same
time. If this width is greater than 384, which is the maximum number of threads
that we allow for a block, we set 384 as the width value. Since level_width is
determined as an average, there may be levels within the blocks having more gates
than this width. We aim to reshape the merged clusters such that no level will
have gates more than this width value. When we have a level having gates more
than the width value, the extra gates will be moved to one level up. To preserve
the dependency between gates, the levels of all gates that are dependent on those
moved gates are also incremented. At the end of this iterative procedure, we will
have rectangular shaped merged clusters with the same width but with differing
heights. Note that there may be fewer gates than the width at a given level. For
such levels, we add dummy gates that have no operational burden.

Finally, each merged and balanced cluster is assigned to a CUDA block.

4.3 Parallel Simulation Phase

Parallel simulation phase consists of several steps that can be seen in Algorithm 2.
During each cycle, input values are transferred from host to device. The inputs are
essentially generated by executing the test-bench on the host. In our experiments,

123

654 Int J Parallel Prog (2011) 39:639–661

Algorithm 5 Parallel Block Simulation Kernel Pseudocode
1: _ _global_ _ void simulationKernel(...){
2:
3: _ _shared_ _ unsigned char vars[8000]; // keep encoded intermediate values
4: numberOfThreads = blockDim.x;
5: index = threadIdx.x; start = blockIdx.x * numberofThreads;
6: vars = coalesced read of encoded values from global device memory;
7: for i = 0; i < level; i + + do
8: // coalesced read gate variables from global device memory
9: i1 = firstInput[start+index];
10: i2 = secondInput[start+index];
11: o = output[start+index];
12: decode variable i1 as v1, i2 as v2;
13: val = v1 ∧ v2;
14: write encoded val to vars array;
15: index+ = number O f T hreads;
16: _ _syncthreads();
17: end for
18: coalesced write vars to global device memory;
19: }

we mainly used random test-benches, hence the input generation could be optimized
as described in the next section. Once the inputs are ready, all CUDA blocks can
be executed by executing a kernel function. An execution of a block with combina-
tional elements proceeds level by level and after each level is simulated the threads
of the block synchronize using a barrier. This process continues until all levels are
completed. We used coalesced memory access for reading and writing gate variables
between the global memory and the CUDA processors. We increased the number of
gates that can be efficiently simulated in a block by encoding the intermediate gate
outputs and storing these in the shared memory. Also, the intermediate gate output
values are stored in shared memory in an encoded fashion, which we describe in next
section. At the beginning of a cycle, blocks fetch relevant design data (gate variables)
and input values from device memory in a coalesced manner. At the end of the cycle,
output and latch values are transferred from device to host. In particular, we stored
the design structure, primary inputs, primary outputs and latches in the device mem-
ory and frequently accessed data structures such as intermediate and-gate values of
a block in the shared memory. Our particular simulation kernel function is shown in
Algorithm 5. We next describe our CUDA optimizations in more detail.

5 CUDA Optimizations

We applied several optimization methods to increase performance of our algorithms.
To develop an effective CUDA program, one needs to have knowledge of the GPU
architecture such as shared memory, memory coalescing and memory transfer over-
head. Communication overhead is a major cost, so we exploited CUDA’s faster shared
memory, register and pinned memories in our implementation.

In CUDA, one can allocate memory space in host memory dynamically by using
CudaMallocHost function instead of the ordinary C malloc function. This uses

123

Int J Parallel Prog (2011) 39:639–661 655

the pinned (paged-locked) memory. Allocating memory with CudaMallocHost
increases the performance of CudaMemcpy operation. We used these functions to
allocate data structures for our designs.

One of the most important optimizations for CUDA programming is to make effec-
tive use of shared memory. Fetching a variable from device memory requires 400–600
cycles, whereas fetching it from the shared memory requires only a few cycles. During
the execution of a CUDA block, we copied the most frequently accessed data struc-
tures to the shared memory such as intermediate and-gate output values, which are
the values obtained after simulating one level of a block. Using the global memory
for this purpose will result in a huge time penalty, hence we write these intermediate
values to the shared memory instead.

For designs with random input generation (random test-benches), we moved the
test-bench code into the GPU and enabled parallel input generation. This removes the
communication need between CPU and GPU. For designs without a random input
generation, we used another optimization method where the inputs of the design and
outputs of the design are not transferred between GPU and CPU during every cycle,
rather these data transfers are done in bulks such as after every 10,000 cycles. Although
this optimization increases the data size to be copied between the host and the device,
our experiments have proven that decreasing the number of CudaMemcpy operations
is more critical than increasing the data size.

Also, since we use AIGER format with only a single type of combinational gate
(an and-gate), we do not need to store the truth table for other types of complex gates
in the shared memory, wasting valuable space.

In addition to the above optimizations, we incorporated the following optimizations
with our second clustering algorithm.

– We developed a new clustering and balancing algorithm that makes maximum use
of all available threads such that every thread is doing the same task without diver-
gent paths. We accomplished this by first merging the clusters and then balancing
them to reshape into rectangular uniform structures as described in Sect. 4.2.2.

– We heavily made use of coalesced memory access for reading and writing variables
between the global memory and the CUDA processors.

– We increased the number of gates that can be efficiently simulated by encoding
the intermediate gate outputs and storing these in the shared memory.

We now describe these optimizations in more detail.
During parallel simulation, we need to access the inputs and outputs of the gates.

To access this information inside the kernel in a time-efficient manner, we put gate
information on the device global memory and access this information in a coalesced
manner. When accessing device global memory, peak performance utilization occurs
when all threads in a half warp (16 threads) access continuous memory locations. For
coalesced access, we have to adjust the data structures that hold gate information.
Therefore, we allocate new arrays for indices of each gate; one for first input, one for
second input and one for the output. These data structures are such that all gates in a
level are adjacent to each other so that when the threads access device global memory
for gate information they are accessed in a coalesced manner. Figure 9 shows this
coalesced memory access.

123

656 Int J Parallel Prog (2011) 39:639–661

Fig. 9 Coalesced memory access

Above we described how we used shared memory for fast access. However, shared
memory size is limited. Each multiprocessor can have 16 KB of shared memory, when
we use 2 blocks for each multiprocessor then each will have 8 KB of shared memory.
If we use one char variable for each gate output value, we can have at most 8,000
variables for a block (8 KB max shared memory for a block), and therefore the total
number of variables in a design can be at most 48 blocks * 8,000 variables = 384,000
variables. This number may be small for large designs. Therefore, we developed an
efficient representation to keep gate output values by using 1 unsigned char variable
(8 bits) for 8 gate outputs since a gate output can only be 0 or 1. At the start of each
block simulation, we bring these encoded variables from device global memory in
a coalesced manner as well. With this representation, we can have 64,000 variables
for a block and in total 48 blocks * 64,000 variables = 3,072,000 variables. This is
equal to the sum of the number of and-gates, latches, primary inputs and outputs in
a design. If we assumed that there is a 30% duplication of gates among blocks, then
we can simulate designs with up to 2 million gates approximately. Similarly encoded
variables are read and written in a coalesced manner.

6 Experimental Results

We validated the effectiveness of our two GPU based parallel CBS algorithms on
several test cases. We used test cases from IWLS [17], OpenCores [24] and AIGER
[2]. These test cases include ldpc-encoder (low density parity check encoder), des-perf
(triple DES optimized for performance), wb-conmax (wishbone conmax IP core), aes-
core (AES Encryption/Decryption IP Core) pci-bridge32, ethernet, vga-lcd (wishbone
compliant enhanced vga/lcd controller), and several other designs. These test cases
either had their own test benches or we generated random test benches for them.
Table 2 displays the list of test cases that we used in our experiments and their design
characteristics including the number of levels and the number of CUDA blocks used
for their simulation for both clustering algorithms. For some test cases, we generated
AIGER format of designs using ABC tool [1].

We performed our experiments on an Intel Xeon CPU with two 2.27 GHz multi-
processors, 32GB of memory and a CUDA–enabled NVIDIA Quadro FX3800 GPU
with 1 GB device memory and 24 streaming multiprocessors each with 8 streaming
processors.

123

Int J Parallel Prog (2011) 39:639–661 657

Table 2 Experimental test cases

Design Vars Inputs Latches Outputs And-Gates Levels Blocks1 Blocks2

ldpc-encoder 220,684 1,723 0 2,048 218,961 19 288 48

vga-lcd 143,879 89 17,079 109 126,711 23 145 48

des-perf 100,500 17,850 0 9,038 82,650 19 373 48

ethernet 80,326 98 10,544 115 69,684 31 364 48

wb-conmax 49,753 1,130 770 1,416 47,853 26 261 24

tv80 7,665 14 359 32 7,292 39 34 24

aes-core 22,841 1,319 0 668 21,522 25 126 24

ac97-ctrl 12,624 84 2,199 48 10,341 8 495 24

pci-bridge32 26,305 162 3,359 207 22,784 29 146 24

system-cdes 2,813 132 190 65 2,491 22 48 24

pci-spoci-ctrl 880 25 60 13 795 14 29 24

sasc 740 16 117 12 607 7 49 24

Table 3 Experimental results for 100,000 cycles

Design SEQ(sec) PAR1(sec) PAR2(sec) Speedup1 Speedup2

ldpc-encoder 382.21 74.79 24.32 5.11 15.72

vga-lcd 223.15 45.91 25.45 4.86 8.77

des-perf 180.62 65.68 8.53 2.75 21.17

ethernet 155.51 52.89 14.96 2.94 10.40

wb-conmax 94.81 33.96 10.8 2.79 8.78

tv80 92.59 23.31 10.63 3.97 8.71

aes-core 83.64 35.63 7.97 2.35 10.49

ac97-ctrl 58.66 18.87 4.74 3.11 12.38

pci-bridge32 50.12 21.7 9.39 2.31 5.34

system-cdes 30.44 11.55 6.92 2.64 4.40

pci-spoci-ctrl 7.04 10.44 5.13 0.67 1.37

sasc 6.26 6.34 3.75 0.99 1.6

In Table 3, we demonstrate our experimental results. Column SE Q denotes the
results for sequential simulation using the default simulator that is available with AI-
GER [2]. Columns P AR1 and P AR2 denote the results for our parallel simulation
algorithms using the first and the second clustering algorithms, respectively. Col-
umns Speedup1 and Speedup2 denote the speedup of parallel algorithms over the
sequential algorithm. The times do not include the compilation phase in both cases but
include the time required to transfer the data between the GPU and the CPU. Figure 10
graphically displays the speedups.

We simulated the designs for different number of cycles ranging from 100, 500 K to
1 M. Figure 11 shows that the speedups are similar for different number of cycles for

123

658 Int J Parallel Prog (2011) 39:639–661

0.00

5.00

10.00

15.00

20.00

25.00

Speedup over Sequential

PAR1 PAR2

Fig. 10 Parallel simulation speedups over sequential simulation for 100,000 cycles

Fig. 11 Parallel simulation
speedups versus number of
cycles

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

100 500 1000

S
p

ee
d

u
p

Number of Cycles (K)

ldpc-encoder PAR1

ldpc-encoder PAR2

vga-lcd PAR1

vga-lcd PAR2

ldpc-encode and vga-lcd. We obtained similar results for other testcases. We present
results for 100K cycles in the rest of the experiments.

Different speedups are expected for logic simulation due to the fact that logic sim-
ulation is heavily influenced by the circuit structure. We obtained speedups up-to 5x
for PAR1 and up-to 21x for PAR2. Both PAR1 and PAR2 outperform SEQ except for
two cases where PAR1 performs worse than SEQ. In all test cases, PAR2 significantly
outperforms both SEQ and PAR1.

In general, arbitrary circuit structures make it difficult to analyze designs and the
corresponding speedups. However, Fig. 12 shows that both PAR1 and PAR2 speedups
are proportional with the design size (the number of variables). Hence, further studies
with larger designs hold promise. In fact, for smaller designs such as pci-spoci-ctrl
and sasc, PAR1 performs worse than the sequential algorithm. Figure 13 shows that

123

Int J Parallel Prog (2011) 39:639–661 659

0.00

1.00

2.00

3.00

4.00

5.00

6.00

P
A

R
1

S
p

ee
d

u
p

Vars

PAR1 versus Vars

0.00

5.00

10.00

15.00

20.00

25.00

P
A

R
2

 S
p

ee
d

u
p

Vars

PAR2 versus Vars

Fig. 12 Parallel simulation speedups versus design size

0.00

5.00

10.00

15.00

20.00

25.00

24 24 24 24 24 24 24 24 48 48 48 48

P
A

R
2

 S
p

ee
d

u
p

Blocks2

PAR2 versus Blocks

PAR2

Fig. 13 Parallel simulation speedup using second clustering versus number of CUDA blocks

the speedup is better when the number of blocks is increased from 24 to 48 for PAR2.
This is related to the fact that the higher number of blocks is chosen for larger designs
in PAR2. We also observe from Fig. 10 that three of the top four speedups for PAR2
are obtained for designs with no latches such as ldpc-encoder, des-perf, and aes-core.
This is expected since there is no need to start another GPU kernel for latches after
and-gate simulation.

For PAR1, we experimented with the threshold values. We observed that the thresh-
old value is dependent on the circuit structure as well. For example, for most testcases
including sasc the execution time changes almost linearly with the threshold value.

123

660 Int J Parallel Prog (2011) 39:639–661

We observed that the number of gates in the designs can be higher using AIGs than
the other gate level formats. Although our experiments showed that AIGs are effective
in reducing the shared memory size, AIGs may result in higher number of levels that
may lead to execution overheads. So further synthesis steps in ABC tool can help
reduce the number of levels.

Our parallel algorithm compilation phases may spend more time than the sequential
algorithm. Once the compilation is done, it is saved so that simulations with different
test benches or parameters or number of cycles can be done without incurring the
compilation cost again. In practice, once the design matures, simulations are run until
the design product is taped-out.

7 Conclusions

We introduced two novel parallel cycle-based simulation algorithms for digital
designs using GPUs. This work has further progressed the state of the art in logic
simulation. Our algorithms result in faster, more efficient parallel logic simula-
tors that can run on commodity graphics cards allowing verified designs while
obtaining significant reduction in the overall design cycle. Our approach leverages
the GPU architecture by optimizing on low latency memory spaces, and reducing
host and device communications during compilation and simulation phases of a
cycle based simulation algorithm. Our approach is unique in that we use the AIG
representation for electronic designs that proves to be very efficient for boolean
functions.

We obtained speedups ranging from 5× to 21× with our first and second algorithms,
respectively, for various benchmarks. Our first clustering algorithm uses a given thresh-
old to generate independent CUDA blocks for parallel simulation. Whereas, our second
clustering algorithm automatically generates CUDA blocks while using sophisticated
merging and balancing steps in order to maximize the number of parallel threads that
can be executed on the GPU. Our second algorithm also improves on the first by bet-
ter utilization of shared memory and memory coalescing as well as supporting larger
design sizes, which is crucial for practical applications. Since logic simulation is an
activity that continues nonstop until the design is productized such speedups have
a big impact on the verification and the overall design cycle. Our results show that
we obtain better speedups with larger circuits. Hence, further studies with industrial
designs hold promise.

As a future work, we want to investigate other gate level design formats and develop
event-based simulation algorithms that are also commonly used in the industry. We
also want to experiment with complex industrial test cases that may not fit on a single
GPU device.

Acknowledgments We would like to thank Alan Mischenko from the University of California, Berkeley
for suggesting and providing AIG benchmarks. This research was supported by a Marie Curie European
Reintegration Grant within the 7th European Community Framework Programme and BU Research Fund
5483.

123

Int J Parallel Prog (2011) 39:639–661 661

References

1. ABC web site. http://www.eecs.berkeley.edu/~alanmi/abc/
2. AIGER Format web site. http://fmv.jku.at/aiger/
3. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: a survey. Int. VLSI J. 19(1–2), 1–81

(1995)
4. Bailey, M.L., Briner, J.V. Jr., Chamberlain, R.D.: Parallel logic simulation of VLSI systems. ACM

Comput. Surv. 26(3), 255–294 (1994)
5. Bergeron, J.: Writing Testbenches—Functional Verification of HDL Models. Springer, Berlin (2003)
6. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification tool. In: Proceedings

of the International Conference on Computer-Aided Verification (CAV) (2010)
7. Catanzaro, B., Keutzer, K., Su, B.Y.: Parallelizing CAD: a timely research agenda for EDA. In: Pro-

ceedings of the Design Automation Conference (DAC), pp. 12–17. ACM (2008)
8. Chatterjee, D., DeOrio, A., Bertacco, V.: Event-driven gate-level simulation with GP-GPUs. In: Pro-

ceedings of the Design Automation Conference (DAC), pp. 557–562 (2009)
9. Chatterjee, D., DeOrio, A., Bertacco, V.: GCS: High-performance gate-Level simulation with GPGPUs.

In: Proceedings of the Conference on Design Automation and Test in Europe (DATE), pp. 1332–1337
(2009)

10. Chatterjee, S., Mishchenko, A., Brayton, R.K., Wang, X., Kam, T.: Reducing structural bias in tech-
nology mapping. IEEE TCAD 25(12), 2894–2903 (2010)

11. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.: A performance study of general-
purpose applications on graphics processors using CUDA. J. Parallel Distrib. Comput. 68(10), 1370–
1380 (2008)

12. Croix, J.F., Khatri, S.P.: Introduction to GPU programming for EDA. In: Proceedings of the Interna-
tional Conference on Computer Aided Design (ICCAD), pp. 276–280. ACM (2009)

13. NVIDIA CUDA web site. http://www.nvidia.com/CUDA
14. Deng, Y.S., Wang, B.D., Mu, S.: Taming irregular EDA applications on GPUs. In: Proceedings of

the International Conference on Computer Aided Design (ICCAD), pp. 539–546. ACM (2009)
15. Hering, K.: A Parallel LCC Simulation System. In: Proceedings of the International Parallel and

Distributed Processing Symposium (IPDPS) (2002)
16. Hering, K., Reilein, R., Trautmann, S.: Cone clustering principles for parallel logic simulatio. In:

International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, pp. 93–100 (2002)

17. IWLS 2005 Benchmarks. http://www.iwls.org/iwls2005/benchmarks.html
18. Johannes, F.M.: Partitioning of VLSI circuits and systems. In: Proceedings of the Design Automation

Conference (DAC), pp. 83–87. ACM (1996)
19. Meister, G.: A survey on parallel logic simulation Technical report. Department of Computer Engi-

neering, University of Saarland, Saarland (1993)
20. Mishchenko, A., Brayton, R., Jang, S.: Global delay optimization using structural choices. In: FPGA

’10: Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, pp. 181–184. ACM (2010)

21. Mishchenko, A., Chatterjee, S., Brayton, R.: DAG-aware AIG rewriting: a fresh look at combinational
logic synthesis. In: Proceedings of the Design Automation Conference (DAC) (2006)

22. Nguyen, H.: Gpu Gems 3. Addison-Wesley Professional, Reading (2007)
23. OpenCL web site. http://www.khronos.org/opencl/
24. Opencores Benchmarks. http://www.opencores.org
25. Perinkulam, A.: Logic Simulation Using Graphics Processors. Master’s thesis, University of Massa-

chusetts Amherst (2007)
26. Pfister, G.: The Yorktown simulation engine: introduction. In: Proceedings of the Design Automation

Conference (DAC) (1982)
27. Sen, A., Aksanli, B., Bozkurt, M., Mert, M.: Parallel cycle based logic simulation using graphics pro-

cessing units. In: Proceedings of the International Symposium on Parallel and Distributed Computing
(ISPDC) (2010)

28. Zhu, Q., Kitchen, N., Kuehlmann, A., Sangiovanni-Vincentelli, A.: SAT sweeping with local observ-
ability don’t-cares. In: Proceedings of the Design Automation Conference (DAC) (2006)

123

http://www.eecs.berkeley.edu/~alanmi/abc/
http://fmv.jku.at/aiger/
http://www.nvidia.com/CUDA
http://www.iwls.org/iwls2005/benchmarks.html
http://www.khronos.org/opencl/
http://www.opencores.org

	Speeding Up Cycle Based Logic Simulation Using Graphics Processing Units
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 CUDA Programming
	3.2 And-Inverter Graph (AIG)
	3.3 Sequential Cycle-Based Simulation

	4 Parallel Cycle-Based Simulation Using GPUs
	4.1 Levelization
	4.2 Clustering and Balancing of Gates
	4.2.1 First Clustering Algorithm
	4.2.2 Second Clustering Algorithm

	4.3 Parallel Simulation Phase

	5 CUDA Optimizations
	6 Experimental Results
	7 Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

