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1. Introduction

Increased interest in system on a chip design has resulted in a need to improve

verification methods for analog/mixed-signal (AMS) circuits. Digital circuit veri-

fication methodology has changed dramatically in the past ten years while AMS

circuit validation methodology remains largely the same. AMS circuit verification

is still largely driven by designers using many simulation traces to validate specific

properties of a circuit. While this methodology has been used with success for

many years, recent trends are stretching it beyond its capacity. Increase in process
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variations and use of mixed-signal circuits present challenges that this simulation

only methodology is not well prepared to address.

Currently, most AMS designers use an informal approach to circuit verification.

With the aid of a simulator, the designer creates a circuit that under ideal conditions

meets a set of specifications. A major concern for circuit designers using today’s

process technologies is the circuit’s resilience to process variation. To help under-

stand how the circuit operates under global variation, corner simulations are run.

These simulations evaluate circuit performance for various values of global param-

eters such as process, voltage, and temperature. There may also be local transistor

to transistor process variation. To understand how this variation affects the circuit,

Monte Carlo simulation is employed. These methods for exploring global and local

variation are very expensive. This expense increases dramatically as more sources

of variation are explored. As a result, only the most common sources of variation of

the most critical specifications of the most critical circuits are thoroughly validated.

The design team also has no real measure of the quality of the verification performed

on the design. The correctness of the design is almost solely the responsibility of

each designer. Lack of feedback to the designer and large cost to verify the circuit

under variation are major concerns when using this simulation only methodology.

Based on the success of formal methods for digital circuits, there has been an

increasing body of work in formal methods for AMS circuits. Several tools and

methods have been developed to explore the continuous state space of these systems

[10, 2, 8, 13, 19, 18]. These methods work well on small examples and have shown

some promise to work on larger circuits. One challenge for these methods is the

significant effort required to create an appropriate abstract formal model for each

circuit of interest. These methods also suffer from high computation costs for the

analysis of the model. The more accurately the method explores the state space of

the system, the more computationally intensive it is.

In response to these challenges, there has been recent work in verifying formal

properties within the framework of simulation. One type of approach attempts to

find a finite number of simulation traces that are sufficient to represent all trajec-

tories of the system and therefore prove correctness of the circuit [6, 3, 9, 7]. A

second approach verifies formal properties on the simulation traces [17, 11]. A third

approach uses simulation traces to generate a formal model which is then analyzed

using a state space exploration engine [4]. The method used in LEMA [15, 14] is

similar to the method by Dastidar et al.[4] that generates a finite state machine

(FSM) from a systematic set of simulation traces. Their FSM includes currents,

voltages, and time as state variables to generate an acyclic FSM. The state space

of the system is divided into symmetric state divisions. After each delta time step,

the current state of the simulator is determined and rounded to the center of the

appropriate state division. The simulator is then started from this point and run

for the next delta time step. This process continues until the global time reaches a

user specified maximum. Conversely, our approach uses Labeled Hybrid Petri Nets

(LHPNs) [19] as the model. The state space is divided as specified by user provided

thresholds on signal values. A global timer is not a part of the state space, so the
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graphs produced may include cycles. Simulation traces are run from start to finish

without stopping allowing our model to preserve the original simulation trace.a

The novelty of our approach is that the model allows for dynamic variation

of parameters. Standard simulation based methods allow for changes in initial

conditions and parameters, but these values are then fixed for the duration of the

simulation run. Our model explores the system under ranges of initial conditions as

well as ranges of dynamically changing parameter values. This additional behavior

improves our ability to uncover variation induced errors.

The verification flow supported by our tool, LEMA, is shown in Fig. 1. There

are two primary input formats accepted by LEMA, VHDL-AMS and simulation data.

Our previous work [13, 19, 20, 18] describes how a subset of VHDL-AMS can be

compiled into a LHPN and formally verified. Each model checker uses a different

data structure to represent that state space including: difference bound matrices

(DBMs) [13, 12], binary decision diagrams (BDDs) [19], and satisfiability modulo

theories (SMT) formulas [18]. The other option is to use the simulation traces al-

ready produced by the designer as well as safety properties and thresholds on the

signal levels of the design variables to automatically generate AMS HDL and LHPN

models of the system [20, 15, 14]. The AMS HDL models are intended for use in

system-level simulations. These models are not as accurate as the transistor-level

models, but they simulate much faster and support standard simulation environ-

ments and workflows. The LHPN model generated by the model generator can be

used to formally verify safety properties of the system using one of LEMA’s model

checkers. Our model generator is the subject of this paper.
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Fig. 1. LEMA workflow diagram.

2. Motivating Example

The switched capacitor integrator circuit shown in Fig. 2 is a circuit used as a com-

ponent in many AMS circuits such as ADCs and DACs. Although only a small

aDue to the low pass filtering of the windowing technique, the model does not necessarily
preserve the exact input traces. However, the algorithms do ensure that the low pass filtered
versions of the input traces are valid possible output traces of the resulting LHPN model.
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piece of these complex circuits, the switched capacitor integrator proves to be a

useful example illustrating the type of problems that can be present in AMS circuit

designs. Discrete-time integrators typically utilize switched capacitor circuits to ac-

cumulate charge. The switched capacitor portion of this circuit includes transistors

Q1 and Q2 along with capacitor C1, and it behaves like a resistor with resistance

of 1/(C · freq) (i.e. a 2 MΩ resistor). Capacitor mismatch can cause gain errors in

integrators. Also, the CMOS switch elements in switched capacitor circuits inject

charge when they transition from closed to open. This charge injection is difficult to

control with any precision, and its voltage-dependent nature leads to circuits that

have a weak signal-dependent behavior. This can cause integrators to have slightly

different gains depending on their current state and input value. Circuits using

integrators run the risk of the integrator saturating near one of the power supply

rails. Therefore, the verification property to check for this circuit is whether or not

the voltage Vout can rise above 2000 mV or fall below −2000 mV where the values

of ±2000 mV represents the saturation points near the power rails. It is essential

to ensure that this never happens during operation under any possible permutation

of component variations. For simplicity, this paper assumes for this example that

the major source of uncertainty is that the capacitor C2 can vary dynamically by

±10 percent from its nominal value. This circuit, therefore, must be verified for all

values in this range [16].

dVout/dt ≈ ±20 mV/µsfreq(Vin) = 5 kHz
Vin = ±1000mV

Φ2Φ1

C1

Q1

Vin

Vout

C2

C2 ≈ 25 pF

C1 = 1 pF

freq(Φ1) = freq(Φ2) = 500 kHz

Q2
+

−

Fig. 2. A schematic of a switched capacitor integrator.

3. Labeled Hybrid Petri Nets

An LHPN is a Petri net model developed to represent AMS circuits. The model

is inspired by features in both hybrid Petri nets [5] and hybrid automata [1]. An

LHPN is a tuple N = 〈P, T,B, V, F, L,M0, S0, Q0, R0〉 where:

• P is a finite set of places;

• T is a finite set of transitions;

• B is a finite set of Boolean signals;

• V is a finite set of continuous variables;
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• F ⊆ (P × T ) ∪ (T × P ) is the flow relation;

• L is a tuple of labels defined below;

• M0 ⊆ P is the set of initially marked places;

• S0 is the set of initial Boolean signal values;

• Q0 is the set of initial ranges of values for each continuous variable; and

• R0 is the set of initial ranges of rates for each continuous variable.

A key component of LHPNs are the labels. The labels permitted in LHPNs are

represented using a tuple L = 〈En,D,BA, V A,RA〉:

• En : T → P labels each transition t ∈ T with an enabling condition;

• D : T → |Q|× (|Q|∪{∞}) labels each transition t ∈ T with a lower and upper

bound [dl, du] on the delay for t to fire;

• BA : T × B → {0, 1,unc} la bels each transition t ∈ T and Boolean variable

b ∈ B with the Boolean assignment made to b when t fires.

• V A : T × V → (Q × Q) ∪ {unc} labels each transition t ∈ T and continuous

varia ble v ∈ V with the continuous variable assignment, specified as a range

of values [al(t, v), au(t, v)], that is made to v when t fires.

• RA : T × V → (Q × Q) ∪ {unc} labels each transition t ∈ T and continuous

vari able v ∈ V with the continuous rate assignment, specified as a range of

values [rl(t, v), ru(t, v)], that is made to v when t fires.

Assignments to unc leave the value unchanged. These assignments are not repre-

sented in the graphical representation.

The enabling condition is defined using a restricted set of hybrid separation

logic (HSL) formulas from the set P which are a Boolean combination of Boolean

variables and separation predicates (inequalities relating continuous variables to

constants). These formulas satisfy the following grammar:

φ ::= true | false | bi | ¬φ | φ ∧ φ | vi ≥ ki

where bi is a Boolean signal, vi is a continuous variable, and ki is a rational constant

in Q. Since non-strict inequalities are not supported by the DBM-based state space

exploration analyzer, the negation of ≥ inequalities represent ≤ inequalities.

The semantics of the LHPN model are briefly illustrated using an LHPN model

of the switched capacitor integrator shown in Figure 3. A formal description of the

semantics for LHPNs can be found in [20]. The output voltage, Vout, is modeled

by the LHPN shown in Figure 3a. The rate of the output voltage changes based

on the value of Vout and the input voltage. The square wave input voltage, Vin, is

modeled using the LHPN shown in Figure 3b. Vin is modeled as a stable, multi-

valued continuous quantity. Stable, multi-valued continuous quantities are modeled

using continuous variables with a rate of zero and are updated using a variable

assignment after a time delay. The LHPN shown in Figure 3c is used to detect a

failure. The enabling condition on the transition is the negation of an HSL formula
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for the safety property being verified. When this transition is enabled and fires,

a failure is detected. In the initial state, p0, p1, and p6 are marked; fail is false;

Vout is −1000 mV; Vin is −1000 mV; the rate of Vin is 0; and the rate of Vout is 17

to 24 mV/µs. Initially, t1 is the only enabled transition. However, as time passes,

Vout crosses 0 V enabling t6 which fires immediately moving the token from p6 to

p3. After 100 to 101 µs from the initial state, t1 fires and sets Vin to 1000 mV. This

change on Vin enables transition t3 which fires immediately and sets the rate of Vout

to be between −24 and −17 mV/µs. Transition t4 fires next in zero time when

Vout < 0 V . After this firing, transition t2 fires after being enabled 99 to 100 µs.

This firing sets Vin to −1000 mV and enables transition t5 which fires immediately

and sets the rate of Vout to be between 17 and 24 mV/µs. This behavior continues

until the range of Vout enables transition t0 which fires and sets fail to true.

t6

t3

p6(00)

p4(11)

p5(10)

t4

t5

〈V̇out := [17, 24]〉

〈V̇out := [−24,−17]〉

p3(01)

[0, 0]{¬Vin ≥ 0}

[0, 0]{Vin ≥ 0}

[0, 0] {Vout ≥ 0}

〈V̇out := [17, 24]〉 〈V̇out := [−24,−17]〉

[0, 0]{¬Vout ≥ 0} p2(1000)

p1(−1000)

[99, 100]
〈Vin := −1000〉

t2

t1

〈Vin := 1000〉
[100, 101]

p0

t0

[0, 0]〈fail := T 〉
{(¬Vout ≥ −2000) ∨ Vout ≥ 2000}

Initial values = {Vout = −1000mV, Vin = −1000mV, fail = F}; Initial rates = {V̇in = 0, V̇out = [17, 24]}

(a)

(b)

(c)

Fig. 3. A simple LHPN example for the switched capacitor integrator. (a) Vout, (b) Vin, and
(c) property portions of the LHPN.

4. Abstract Model Generation

Our modeling work differs from the previous work in several ways. The most pro-

nounced differences are the accuracy of the abstract model and the use of non-

determinism. Previous methods attempt to abstract the model while maintaining

transistor-level accuracy. The abstract models produced by LEMA’s model generator

do not attempt to maintain this level of accuracy but do model ranges of parameters

and conditions using non-determinism. They are intended to be used in system-level

simulations to verify properties such as connectivity between the digital and analog

circuits or for use in formal verification. As a result, these models are less general,

but the model generation and simulations using these models are more efficient.

During the course of traditional analog circuit verification, designers run many

different simulations to verify that the circuit meets its specification. The model

generator’s goal is to automatically generate abstract models from this simulation

data. The generated circuit models are conservative and model all the provided
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simulation traces plus additional behavior. By using simulations already produced

by the designer, no additional simulation time is required. However, the quality of

the model is directly related to the simulations used to create it. If the designer

has inadequately simulated the design, the model may not exhibit the full behavior

of the system. In this case, there is a potential that the actual circuit may have a

failing behavior that is not included in the generated model. To help address this

issue, Section 5 discusses the use of coverage metrics.

This section first describes the algorithms to construct an LHPN model. Next,

it describes methods to produce a normalized LHPN model for formal verification

as well as VHDL-AMS and Verilog-AMS models for system-level simulation.

4.1. Model generation algorithms

Two simulations of the switched capacitor integrator are used to construct the model

for this example. In particular, the switched capacitor integrator is simulated with

capacitance values of 23 pF and 27 pF for capacitor C2. The simulation data is

recorded for the nodes representing the input voltage, Vin, and output voltage, Vout,

during a 400 µs transient simulation for each capacitance value. Part of the data

from the 23 pF simulation is shown in the first three columns of Table 1.

Table 1. Simulation data with C2 = 23 pF for the switched capacitor integrator.

Time Vin Vout Region ∆Vin/∆t ∆Vout/∆t
(µs) (mV) (mV) (mV/µs) (mV/µs)
0.00 -1000 -1000 00 -40.07 21.85
0.51 -1000 -999 00 0.0 21.74

...
...

...
...

...
...

28.52 -1000 -391 00 0.0 23.74
32.00 -1000 -304 00 - -
35.01 -1000 -217 00 - -
38.51 -1000 -174 00 - -
41.54 -1000 -87 00 - -
45.00 -1000 5 01 0.0 21.72

...
...

...
...

...
...

100.62 -520 1176 01 - -
100.78 120 1176 11 275.00 -21.08

...
...

...
...

...
...

400.00 1000 -957 10 - -

Algorithm 1 describes the process of taking simulation data and generating an

abstract model. The inputs to the algorithm are Var, Σ, θ, propHSL, ws, ǫ, ratio,

τmin, nonC, sig, and sep. Each variable ν ∈ Var is a design variable in the system

being modeled. Σ is the set of time series simulation traces. Each trace σ ∈ Σ

is an n-tuple 〈τ, ν0, . . . , νn〉 where τ ∈ R is the timestamp for the data points

(ν0, . . . , νn) ∈ R⋉ where νi ∈ Var and n is |Var |. For example, in Table 1 the
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first column is τ ; the second column is ν0; and the third column is ν1. To access

the timestamp for data point i the notation σi(τ) is used. Similarly, to access the

data value i for variable ν the notation σi(ν) is used. In Table 1, σ1(τ) is 0.51 µs

and σ1(Vout) is −999 mV. θ is the set of thresholds on the signal levels of the

design variables in Var. Increasing the number of thresholds increases both the

complexity and accuracy of the model. The thresholds, θ, for each variable ν are

〈θ0(ν), . . . , θm(ν)〉 where θ0(ν) is −∞ and θm(ν) is ∞. The thresholds are used to

group the simulation data into regions ξ, where ξi(ν) = [θi(ν), θi+1(ν)], and do not

need to be equidistant. The lowest region for a variable is ξ0(ν) and the highest

region is ξm−1(ν). propHSL is a safety property specified using a restricted HSL

formula. The remaining parameters to genModel, ws , ǫ, ratio, τmin, nonC , sig , and

sep, are optional parameters that can be specified to configure the model generation

process. ws is the window size used in rate calculation and has a default value of

200 lines. ǫ, ratio, and τmin are used in the detection of digital-like signals and have

default values of 0.1, 0.8, and 5e-6, respectively. nonC is a function that maps a

signal to a set of non-causal signals (i.e., nonC :Var → 2Var ). sig and sep are used

in the normalization process and have default values of 2 and 1, respectively.

Algorithm 1: genModel(Var ,Σ, θ, propHSL,ws, ǫ, ratio, τmin,nonC , sig , sep)

N := null;1

forall σ ∈ Σ do2

reg := assignRegions(σ,Var , θ);3

rate := calculateRates(σ,Var ,ws, reg);4

(dmv , start , end) := detectDMV(σ,Var , ǫ, ratio, τmin);5

N := updateLHPN(N,Var , σ, reg , rate, dmv , start , end ,nonC , θ);6

writeNormalizedLHPN(N , propHSL, sig , sep);7

writeVHDLAMS(N , propHSL);8

writeVerilogAMS(N );9

In Algorithm 1, the value null is used to initialize non-set based data types to

an initial value (line 1). Each data point for each variable for each simulation trace

σi(ν) is given a region assignment regi based on the thresholds (lines 2-3). The vari-

able’s region assignment at data point i is accessed using the notation regi(ν) and

is an integer value between 0 and |ξ(ν)|. In Table 1, the fourth column represents

the region assignment, so reg|σi| is 10; reg|σi|(Vin) is 1. Next, ranges of rates are

calculated for each continuous variable within each region (line 4). The algorithm

assumes nothing about the dependence or independence of the rates. Each rate is

calculated individually for each region for each simulation trace. The variable’s rate

assignment at data point i is accessed using the notation ratei(ν). In Table 1, the

fifth column represents the rate assignment for Vin, so rate0(Vin) is −40.07 mV/µs.

It is expected that the rates change during different phases of operation. For this

reason, it is important that thresholds are selected to separate the different phases

of operation into distinct regions. At this point, continuous variables which are

mostly stable but occasionally change are identified as variables that can be ap-
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proximated by discrete transitions, discrete multi-valued (DMV) variables (line 5).

The variable dmv is the set of variables detected as DMV variables. All of this

information is collected for the current simulation trace and combined with the in-

formation from other simulation traces in the LHPN representing the system model

(line 6). Finally, the abstract models are generated (lines 7-9).

The first step of Algorithm 1 is to assign the data to regions using the user-

provided thresholds (line 3). In this example, the thresholds for both Vin and Vout

are 0 V. Algorithm 2 analyzes each variable in the system at each time point in a

simulation trace to assign the appropriate region encoding (lines 1-2). The region

value is assigned based upon the location of the data point relative to the threshold

values for the given variable (lines 3-4). In the data shown in Table 1, each digit in

the fourth column represents the region. For instance, at time 100.62 µs in Table 1,

the region assigned is 〈01〉 indicating that Vin is below 0 V and Vout is above 0 V.

When Vin moves above 0 V at time 100.78 µs, the region is 〈11〉.

Algorithm 2: assignRegions(σ, Var , θ)

forall ν ∈ Var do1

forall i ∈ [0, |σ|] do2

forall j ∈ [0, |ξ(ν)|] do3

if σi(ν) ∈ ξj(ν) then reg i(ν) := j;4

return reg ;5

After regions have been assigned to each data point, the rates are calculated

for each region using Algorithm 3, calculateRates. A rate is calculated for each

eligible data point in the trace (line 1). Not all points are eligible for rate calculations

due to a low pass filtering technique used to smooth edge effects caused by region

boundaries and transitory pulses. The low pass filtering uses a sliding window

approach that works by calculating the rate of change for a variable between the

current point and a point ws points further in time if all points between are in the

same region (lines 2–3). For example, in Table 1, using a value of four for ws , the

rate of change for Vout at time 28.52 µs in Table 1 is calculated by looking at its

value at this time point and the value four points later, 41.54 µs. This value is

determined to be 23.74 mV/µs. When the algorithm moves to calculate the rate

for the next point, 32.00 µs, it finds that the data point four points later is in a

different region and does not calculate a rate for the 32.00 µs point.

Algorithm 3: calculateRates(σ,Var ,ws, reg)

forall i ∈ [0, |σ| − ws] do1

if ∀ j ∈ [0,ws ].reg i = regj then2

forall ν ∈ Var do ratei(ν) := (σi+ws(ν) − σi(ν))/(σi+ws(τ) − σi(τ));3

return rate;4

In AMS designs, it is expected that digital signals are present. To take advan-

tage of the digital abstraction and reduce analysis complexity, digital-like signals
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are detected and modeled discretely. Instead of allowing them to change with a

specific rate, a constant value can be directly assigned to the variable at a specified

time after entering a region. A DMV variable is detected when it remains constant

for a specified ratio of time with respect to the total time for the simulation. Re-

maining constant is defined as staying within an ǫ bound for a minimum time, τmin.

Algorithm 4 describes the DMV detection algorithm, detectDMV. The algorithm

tests each variable in the trace separately (line 2). The analysis begins with the

first point and checks to see if the second point is equivalent within the specified

ǫ bound (lines 3-6). If it is within the ǫ bound, the next point is tested. This

occurs until a point is found that is not equivalent. When this occurs, the time

elapsed between the initial point and the current position is tested (line 7). If this

time, σj(τ)− σi(τ), is greater than τmin, the value is added to the running total of

constant time, tconst (lines 7-8). The start and end points for the constant run of

the variable ν are also recorded (lines 9-10). When all points have been analyzed,

the ratio of constant time, τconst, to total time for the trace, σ|σ|(τ), is calculated.

If this ratio exceeds the specified ratio, the variable is added to the set of DMV

variables (line 11). In the switched capacitor integrator example, the square wave

input voltage, Vin, is an example of a DMV variable. This can be inferred from

Table 1 as Vin is largely constant.

Algorithm 4: detectDMV(σ,Var , ǫ, ratio, τmin)

start, end = ∅;1

forall ν ∈ Var do2

i, j, τconst := 0;3

while i < |σ| do4

i := j;5

while (|σi(ν) − σj+1(ν)| ≤ ǫ
2
∧ j < |σ|) do j := j + 1;6

if (σj(τ) − σi(τ)) ≥ τmin then7

τconst := τconst + (σj(τ) − σi(τ));8

start(ν) = start(ν) ∪ i;9

end(ν) = end(ν) ∪ j;10

if (τconst/σ|σ|(τ)) ≥ ratio then dmv := dmv ∪ ν;11

return (dmv , start , end);12

After the needed information has been calculated for a trace, updateLHPN shown

in Algorithm 5 updates the LHPN, N , with the new information. Algorithm 6,

the updateRegionGraphs function, examines each region in the simulation trace

adding new regions and updates the rates of existing regions. The updateDMVGraphs

function shown in Algorithm 7 adds information to the graphs for DMV variables

(line 2). The initial value, rate, and region for each variable in each simulation trace

are also recorded in the LHPN, N (lines 3-6).

Algorithm 6 (updateRegionGraphs) updates the LHPN with region information

from each simulation trace. The notation p(regi) returns the place representing

regi. Similarly, the notation t(regi, regj) returns the transition between the place
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Algorithm 5: updateLHPN(N,Var , σ, reg , rate, dmv , start , end ,nonC , θ)

updateRegionGraphs(N,σ, reg , rate, θ);1

updateDMVGraphs(N,σ, reg , dmv , start , end ,nonC );2

forall ν ∈ Var do3

Q0(N)(ν) := Q0(N)(ν) ∪ σ0(ν);4

R0(N)(ν) := R0(N)(ν) ∪ rate0(ν);5

M0(N)(ν) := M0(N)(ν) ∪ p(reg
0
(ν));6

return N ;7

representing regi and regj . The newT function updates the flow relation, delay

bounds, enabling condition, and rate assignments for the LHPN before returning

the newly created transition. The let notation is used for convenience to indicate

the contents of a tuple (line 1). The algorithm begins by updating the regions for

each data point in the given trace (line 3). A node in the graph is added for the

new region if the region has not been found previously (line 4). For example, Fig. 3

contains four places p3 − p6 representing the four different regions discovered, 00,

01, 11, and 10. While in this example a place is created for every possible region

assignment, in larger examples, many regions may never be encountered during

simulation. Places are not generated for these unreached regions. If not previously

seen, transitions between the current region and the previous region are created

using newT and added to the set of transitions (lines 5-6). It is theoretically possible

that this process could result in a fully connected graph, but in practice this is highly

unlikely. In Fig. 3, there are four of the possible twelve connections (excluding self-

loops). The delay for the transition is set to [0,0] to make it fire immediately

as the state of the system moves from one region to the next. The diffR function

determines the differences between the two regions for use in generating the enabling

condition. Each transition is given an enabling condition representing the threshold

that is being crossed. In the move from 00 to 01 the enabling condition is {Vin ≥ 0}

on t3. The rate of change for the continuous variables in each region is recorded if

it is outside the current range (lines 7-9). These rates are stored on the transitions

between regions as shown in Fig. 3.

Algorithm 6: updateRegionGraphs(N,σ, reg , rate, θ)

let N = (P, T,B, V, F,En, D,BA,VA,RA,M0, S0, Q0, R0);1

regprev := null;2

forall i ∈ [0, |σ|] do3

if p(reg i) �∈ P then P := P ∪ newP(reg i);4

if t(p(regprev), p(reg i)) �∈ T ) then5

T := T ∪ newT(N, p(reg i), p(regprev), (0, 0), θ, diffR(reg i, regprev));6

forall t ∈ T do7

if (t, p(reg i)) ∈ F and ratei < rl(t) then rl(t) := ratei;8

if (t, p(reg i)) ∈ F and ratei > ru(t) then ru(t) := ratei;9

regprev := reg i;10
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Algorithm 7 (updateDMVGraphs) updates the LHPN with DMV variable infor-

mation from each simulation trace. The algorithm begins by initializing the previous

value variable and looping through each DMV variable (lines 2-3). Given a DMV

variable ν, the algorithm begins with the first time value in the start set (lines 4-5).

When a start point is found, the algorithm then searches for the next end point

(lines 6-7). Once the start and end points are found, the enabling region and delay

range are calculated, and the range of values for the given variable in the given con-

stant run are extracted (lines 8-10). To determine the enabling region, the causal

event set must be determined (line 9). The causal event set is determined by finding

the region previous to the one where the constant run begins. The set of variables

that remain constant between the regions is the causal set. If no variables are

constant, then the previous region is examined, etc. The delay range is calculated

using the calcD function (line 10). The lower bound of the range is calculated from

the time the trace enters the previous region until the previous constant run ends.

The upper bound of the range is calculated from the previous region until the start

of the current constant run. This range allows for the variable to change in the

uncertain region between constant runs. Vin is a DMV variable in the switched

capacitor integrator example and changes to its high value in region 11. The pre-

vious region is 01. In this case, Vin would be assigned to change to its high value

based on the time Vout crosses above the threshold of zero. This simplistic causal

calculation may result in the incorrect or inconsistent choice for a causal event. For

example, although a change on Vout may appear to cause Vin, this is not the case.

This choice would result in a poor model as the rate of change of Vout would affect

the time when Vin changes making Vin much less periodic. Therefore, a refinement

to this first method is used. The user can specify the fact that there is not a causal

relationship between two variables in nonC. As a result, these non-causal variables

are ignored in the causal region calculation. If Vout is specified as non-causal in the

previous example, Vin is the only remaining variable. If Vin is causal only with itself

then the delay value is the amount of time Vin remains at a given value. The value

range is calculated by extracting the minimum and maximum values in the constant

run. If a place does not already exist for this value range, then a new one is created

(line 12). For the integrator, place p1 is added for Vin equal to [−1000,−999] mV,

and p2 is added to represent that Vin is equal to [999,1000] mV. The next step

is to create a transition between the current place and the previous place if one

does not exist (lines 13-14). Finally, the value and delay assignments are updated

(lines 15-16).

4.2. Creating models

This section describes methods to create models for formal verification and

system-level simulation. Since LEMA’s DBM-based analyzer only uses integers, the

writeNormalizedLHPN function must normalize the values in the LHPN. The nor-

malization process begins by scaling the minimum rate such that its integer value

is represented using sig values. For instance, if sig is two and the minimum rate

is 0.02 then all rates would be scaled by a factor of 1000 resulting in 0.02 being
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Algorithm 7: updateDMVGraphs(N,σ, reg , dmv , start , end ,nonC , θ)

let N = (P, T,B, V, F,En, D,BA,VA,RA,M0, S0, Q0, R0);1

valprev := null;2

forall ν ∈ dmv do3

while start(ν) �= ∅ do4

i = min(start(ν));5

start(ν) = start(ν) − i;6

j = min(end(ν));7

end(ν) = end(ν) − j;8

regEn := calcEn(σ, i,nonC (ν));9

(τl, τu) := calcD(σ, i, j, regEn, end);10

(val l, valu) = val := extractVals(σ, ν, i, j);11

if p(val) �∈ P then P := P ∪ newP(val);12

if t(valprev, val) �∈ T then13

T := T ∪ newT(N, p(valprev, val), (τl, τu), θ, diffR(regEn, reg i));14

updateAsgVal(val l, valu, t(valprev, val));15

updateDelayVal(τl, τu, t(valprev, val));16

valprev := val ;17

a rate of 20. If this process results in the maximum rate overflowing the integer

space, LEMA reports an error and terminates. The next step is to adjust the constant

values so that at least one integral time unit passes as a variable progresses between

the thresholds at the new rates. The scaling of the constants involves scaling both

thresholds and constant values for DMV variables such that there are sep orders of

magnitude between the rates and constants. For instance, if the rate for a continu-

ous variable is 20 and the thresholds are 0 and 1, the variable would pass between

the thresholds in less than one time unit which poses a problem for the integer-based

analysis. In this case, if the value of sep is one, the constants would be scaled to 0

and 100. This would now require five time units for the variable to pass between

the thresholds. This function also adds to the LHPN a single initially marked place

and a single transition for the safety property. The transition’s enabling condition

is the complement of the safety property. This transition has a delay of [0,0] and

indicates a failure when it fires by setting the Boolean signal fail to true. There-

fore, to verify this safety property, a model checker only needs to determine if there

exists any state in which this transition can fire. For the integrator example, the

LHPN generated to check for saturation is shown in Fig. 3c.

The user can classify a system variable as one of three types: input, output, or

internal. Input variables are not modeled by the system, but the resulting model

contains an input port where the system expects to receive external input for this

variable (e.g., from a test bench). Output variables are modeled and assigned to

an output port. Internal variables are used in the model but no input or output

ports are provided. Any unclassified variables are unmodeled and not used in the

model generation process. If all variables are marked as internal, the model is

self-contained and can be simulated without the aid of an external test bench.
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Otherwise, the abstract model is intended to replace the transistor-level model

which contains the same inputs and outputs as the original circuit. LEMA’s model

generator can also produce both deterministic and non-deterministic models.

Figure 4 is the VHDL-AMS for a self-contained non-deterministic model in which

Vin and Vout are marked internal. The creation of a VHDL-AMS description begins

by creating a real quantity for each internal variable in the system. In this case,

real variables are created for Vin and Vout. Each of these variables are assigned

an initial value using a break statement which is −1000 mV for both Vin and

Vout. DMV variables, Vin in this case, are assigned an initial rate of 0.0 using the

’dot notation, and it is never changed. The rates for non-DMV variables are set

with nested if-use statements based upon the threshold values for each region. For

instance, the if statement models region 00 where both Vin and Vout are below

zero. The rate is set to [17, 24] is this region. The VHDL-AMS description supports

ranges of rates using the span procedure that accepts two real values and returns a

random value within that range. The constant value assignments for DMV variables

are specified using process statements without sensitivity lists. Thewait statement

waits for the proper Boolean condition and then waits for a range of delays before

performing the assignment. In this example, the Boolean condition is implicit, so

Vin is assigned to 1000 mV in 100 to 101 µs after it goes low and then assigned a

value of −1000 mV in 99 to 100 µs after it goes high. Finally, assert statements

are used to describe basic safety properties about the system using the restricted

HSL grammar presented previously. For this example, the assert statement is used

to check if Vout falls below −2000 mV or goes above 2000 mV.

The Verilog-AMS for a deterministic model of the switched capacitor integrator

circuit where Vin is marked as an input and Vout is marked as an output is shown

in Figure 5. Model generation begins by creating a top level inout variable for

each input or output variable in the graph. Vin io and Vout io are the top level

variables. The real variables are created to hold the current value of each output

or internal variable, Vout var in Fig. 5. Variables with a rate are also provided a

real variable to store the current rate, for example Vout rate. The initial condi-

tions for each variable and rate are set in the initial step statement. Each edge

containing a rate or constant value assignment is translated into a cross statement.

The parameters for the cross statement are extracted from the nodes between the

edge. One cross statement is created for an edge where Vin changes from 1000 mV

to −1000 mV by crossing the 0 V threshold. As a result, Vin io is the compare

variable; 0.0 is the numerical value; and -1 is the direction. The sink place sets the

rate of Vout to 0.020, so this assignment is made to Vout rate in the execution

block of the cross statement. A global timer is added to update all rates at an

appropriate interval. For the switched capacitor integrator, an interval of 1 µs is

used to update the value of Vout var based on Vout rate. Finally, a transition

statement is added for each output variable to quickly transition the value of the in-

ternal variable to the external interface. Note that to make the model deterministic,

all ranges are averaged.
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architecture behavioral of swCap is

quantity Vin, Vout:real;

begin

break Vin => -1000.0, Vout => -1000.0;

Vin’dot == 0.0;

if not Vin’above(0.0) and not Vout’above(0.0) use

Vout’dot == span(17.0,24.0);

elsif not Vin’above(0.0) and Vout’above(0.0) use

Vout’dot == span(17.0,24.0);

elsif Vin’above(0.0) and Vout’above(0.0) use

Vout’dot == span(-24.0,-17.0);

elsif Vin’above(0.0) and not Vout’above(0.0) use

Vout’dot == span(-24.0,-17.0); end use;

process begin

wait for delay(100,101);

break Vin => 1000;

wait for Vin’above(0.0);

wait for delay(99,100);

break Vin => -1000;

wait for Vin’above(0.0);

end process;

assert (Vout’above(-2000.0) and not Vout’above(2000.0))

report "Error: Saturation." severity failure;

end behavioral;

Fig. 4. Non-deterministic VHDL-AMS model for the switched capacitor integrator circuit gener-
ated when both Vin and Vout are marked as internal signals.

module swCap(Vin io,Vout io);

inout Vin io, Vout io;

electrical Vin io, Vout io;

real Vout var, Vout rate;

analog begin

@(initial step) begin

Vout var = -1.00;

Vout rate = 0.020;

end

@(cross(V(Vin io)-0.0,-1)) begin Vout rate = 0.020; end

@(cross(V(Vin io)-0.0,1)) begin Vout rate = -0.020; end

@(timer(0.0,1e-06)) begin Vout var = Vout var + Vout rate; end

V(Vout io) <+ transition(Vout var,1p,1p,1p);

end

endmodule

Fig. 5. Deterministic Verilog-AMS model of the switched capacitor integrator circuit generated
when Vin is marked as an input and Vout is marked as an output.
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5. Coverage Metrics

Coverage information can be extracted from a set of simulations and is key to LEMA’s

abstract model generation methodology. Our method includes a basic coverage

metric where each simulation trace is given a score and uncrossed thresholds are

reported. A higher score is achieved by a simulation trace that exhibits behavior

not previously seen. A metric of this type gives a qualitative measure of the utility

of an additional simulation trace. This type of metric could be used as an aid to

determine the benefit of doing further simulations. Uncrossed thresholds potentially

indicate an inadequate simulation set as the thresholds should characterize the

operating regions of the system. The simulation set should provide information for

all operating regions of the system. The coverage score for a given simulation is

calculated using the following formula with unity weights cvg := p ·wp + t ·wt + c ·

wc + d · wd where p is the number of new places, wp is the places weight, t is the

number of new transitions, wt is the transitions weight, c is the number of times

a range of rate or constant value is updated, wc is the rates and constant values

weight, d is the number of times a delay range is updated, and wd is the delay

weight.

For the integrator example, using just the simulation trace shown in Table 1

with C2 equal to 23 pF would result in an LHPN with the same structure but

different rates from the LHPN shown in Figure 3 and produce a coverage score

of 200 using weights of one. Adding the simulation trace with C2 equal to 27 pF

results in the exact same LHPN structure, but the ranges of rate for Vout would be

changed. Therefore, the value of the second trace run is only 94. Finally, if a third

trace with C2 equal to 25 pF is added at this point, the resulting LHPN would not

change at all as the rates generated from this trace would be contained in those

generated from the first two. Therefore, this trace adds no new knowledge, so the

coverage metric would say that it has no value.

6. Case Studies

Using LEMA’s model generator, two simulation traces of the switched capacitor in-

tegrator result in the LHPN shown in Fig. 3. Although neither of the simulation

traces indicate a problem with saturation of the integrator, a state space analysis

using the DBM model checker finds a potential circuit failure in less than a second.

This failure can occur when the integrator charges the capacitor, C2, at a rate that

is on average faster than the rate of discharge. This situation causes charge to

build up on the capacitor and eventually results in Vout reaching a voltage above

2000 mV. The reason that this method can find this failure is that the LHPN model

represents not only each simulation trace, but also the union of the traces.

Saturation of the integrator can be prevented using the circuit shown in Figure 6.

In this circuit, a 4 MΩ resistor in the form of a switched capacitor is inserted in

parallel with the feedback capacitor. This causes Vout to drift back to 0 V. In other

words, if Vout is increasing, it increases faster when it is far below 0 V than when it

is near or above 0 V. Using the same simulation parameters and thresholds for this

circuit, the model generator obtains an LHPN with the same structure as the one
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Fig. 6. Circuit diagram of a corrected switched capacitor integrator.

shown in Fig. 3, but the ranges of rates for each region are [18,32] for 〈00〉, [9,22]

for 〈01〉, [-22,-9] for 〈11〉, and [-32,-18] for 〈10〉. This LHPN fails verification as the

thresholds are too simple to capture the effect of the additional switched capacitor.

Because the rate of change is now dependent on the value of Vout, the thresholds on

Vout are changed to -500 mV, 0 V, and 500 mV. The LHPN for these new thresholds

is found to satisfy the property in less than a second.

Phase locked loops (PLLs) are notoriously difficult circuits to design and vali-

date. A PLL is typically composed of a phase detector, a low pass filter, a VCO,

and a frequency divider. The phase detector is used to measure the phase difference

between two input signals and provide this information to the VCO. The VCO uses

this information to adjust the phase of the internal PLL clock in order to align the

phase of the two clock signals. The inputs to the phase detector are clk and gclk.

The up and down signals are asserted to provide instruction on how to adjust the

VCO frequency. The phase detector is simulated using a piecewise linear simulation

input 1 µs long that represents reasonable clock skew for one input and a periodic

clock signal for the other input. Simulations are also performed using two periodic

signals of fixed but different periods. These simulations are used to build the LHPN

and Verilog-AMS models for the phase detector.

The Verilog-AMS and LHPN model are generated in approximately 20 seconds

for the phase detector using two 1 µs transient simulations of the piecewise linear

input and a periodic clock input. Eight variables are required for model generation.

Four of the signals are the inputs and outputs while the remaining four signals

internal signals associated with the latches. It is logical that signals from the state

holding latches are required to delineate the states of the phase detector. As all

eight variables are digital signals, each variable is assigned a single threshold equal
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to Vdd

2
. Comparison between simulation times for the transistor-level design and the

Verilog-AMS model are performed using the same simulation inputs and simulator.

Table 2 presents the results of these simulations. The first four simulations use one

piecewise linear input and one periodic input. The final table entry is a result for two

periodic inputs. A comparison of the waveforms produced by the two simulations is

shown in Fig. 7. There is a difference between the two waveforms, but the abstracted

model is accurate enough to be used in a system-level simulation.

Table 2. Simulation times for the transistor-level model and the Verilog-AMS model.

Sim Verilog-AMS (s) Transistor (s) Speed-up
0.5 µs 0.54 18.28 33.8
0.5 µs 0.54 17.92 33.2
1 µs 0.81 36.67 45.3
1 µs 0.81 40.46 49.9
2 µs 0.38 9.47 24.9
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Fig. 7. Simulation traces for the transistor-level and Verilog-AMS models.

The LHPN model for the PLL phase detector is composed of 69 places and 87

transitions. The property ¬(down ∧ up) verifies in 0.3 seconds. This property is a

sanity check ensuring that down and up are not asserted at the same time. A more

complex property for the PLL phase detector is shown as pseudocode in Figure 8.

This pseudocode is a behavioral description of the correct input/output operation

of the phase detector. This property cannot be specified directly in LEMA’s property

language. To verify the property, it is necessary to convert the property to an LHPN

with the appropriate fail transitions. The resulting property LHPN is composed of

20 transitions and 14 places. This property verifies in 2.12 seconds.
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if gclk 1 → 0 then

if up = 1 then up = 0 within 5 ns

elsif down = 0 then down = 1 within 5 ns

if clk 1 → 0 then

if down = 1 then down = 0 within 5 ns

elsif up = 0 then up = 1 within 5 ns

Fig. 8. A property to verify for the PLL phase detector.

7. Conclusion

Interest in formal and semi-formal methods for validating AMS circuits is increasing.

Many of these methods are seriously handicapped by the difficulty of generating

formal models. This paper develops a method to generate a conservative formal

LHPN model from a set of simulation traces and thresholds on the state space.

This LHPN model can be used by several different model checking engines to prove

safety properties about the entire state space of the model. Using two variations of

the switched capacitor integrator circuit, this paper shows how an adequate LHPN

model can be created using two simulation traces and a basic set of thresholds.

The model is analyzed using a DBM based model checker to obtain the expected

verification results. Another benefit of the method described in this paper is that

an LHPN model can be translated into a VHDL-AMS or Verilog-AMS model. One

problem for AMS designers is creation of abstract models of their circuit for use in

digital or mixed-mode simulation flows. Models can be created by hand but must

be updated to remain consistent as circuits change. Using this method, models can

maintain their consistency by running the needed set of simulations after changes

and regenerating the HDL model from the simulations.

Future work includes demonstrating an improved model generation algorithm on

larger examples that combine both analog and digital components. While method

described in this paper requires the user to provide thresholds, initial investiga-

tions into the auto-generation of thresholds are underway. This auto-generation

of thresholds can potentially use input from failure traces and coverage metrics

to improve the model in an abstraction refinement loop. Finally, more expressive

property languages are being investigated for AMS circuits.

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems,
volume 736 of LNCS, pages 209–229. Springer, 1992.
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