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Abstract. Accurate automatical localization of fiducial points in face
images is an important step in registration. Although statistical meth-
ods of landmark localization reach high accuracies with 2D face images,
their performances rapidly deteriorate under illumination changes. 3D
information can assist this process by either removing the illumination
effects from the 2D image, or by supplying robust features based on
depth or curvature. We inspect both approaches for this problem. Our
results indicate that using 3D features is more promising than illumi-
nation correction with the help of 3D. We complement our statistical
feature detection scheme with a structural correction scheme and report
our results on the FRGC face dataset.

1 Introduction

Automatic face recognition traditionally suffers from pose, illumination, occlu-
sion and expression variations that effect facial images more than changes due
to identity. With the emergence of 3D face recognition as a supporting modality
for 2D face recognition, there is renewed interest in robust detection of facial
features. Facial feature localization is an important component of applications
like facial feature tracking, facial modeling and animation, expression analy-
sis, face recognition and biometric applications that rely on 2D and 3D face
data. Especially deformation-based registration algorithms require a few accu-
rate landmarks (typically the nose tip, eye and mouth corners, centre of the iris,
tip of the chin, the nostrils, the eyebrows) to guide the registration. The aim in
landmark detection is locating selected facial points with the greatest possible
accuracy.

The most frequently used approach in the detection of facial landmarks is to
devise heuristics that are experimentally validated on a particular dataset [3,8,9].
For instance in 3D, the closest point to the camera can be selected as the tip of
the nose [4,17]. This method will sometimes detect a streak of hair or tip of the
chin as the nose, but depending on the dataset, it may produce better results than
any statistical method we can devise. However, its value is limited as a method
of pattern recognition, as it cannot be used in any other application or in 2D
facial feature localization. In 2D, contrast differences in the eye region are used
to detect the eyes [10,17]. The assumption that the eyes are open for detection
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can easily be violated, especially when there is simultaneous 3D acquisition with
a laser scanner.

The second approach is the joint optimization of structural relationships be-
tween landmark locations and local feature constraints, which are frequently
conceived as distances to feature templates [14,16]. The landmark locations are
modeled with graphs, where the arcs characterize pairwise distances. In [16] local
features are modeled with Gabor jets, and a template library (called the bunch)
is exhaustively searched for the best match at each feature location. A large
number of facial landmarks (typically 30-40) are used for graph based methods.
Fewer and sparsely distributed landmarks do not produce a sufficient number of
structural constraints.

A third and recent approach in 2D facial feature localization is the adap-
tation of the popular Viola-Jones face detector to this problem [2,6]. In this
approach, patches around facial landmarks are detected in the face area with
a boosted cascade of simple classifiers based on Haar wavelet features [15].
This approach is used for the coarse-scale detection, as a substitute for manual
initialization.

There are very few techniques proposed in the literature to locate facial land-
marks using 3D only. In [5], spin images are used with SVM classifiers to locate
the nose and the eyes. This is a costly method, and the search area has to be
greatly constrained by using prior face knowledge. In [8], the symmetry axes of
the face and two planes orthogonal to it are used to locate the eye and mouth
corners. In [9], the mean and Gaussian curvatures are combined with the first
and second order derivatives of the range image to identify critical points of
the face image. Several heuristics were listed for each type of landmark, with
promising results. However, our preliminary studies with this approach indicate
that robust curvature features require extensive pre-processing that comes with
a high computational cost. Furthermore, the large number of false positives sug-
gests that other features and methods should be used in assistance to obtain
conclusive results.

Other approaches use 3D in conjunction with 2D [3,4,7]. In [4] 3D shape
indices are used with 2D Harris corners to train statistical models for landmarks.
In [3], 3D distances between facial points are used to constrain landmark search
areas and to clear the background clutter. In [7], it was shown that 2D methods
with 3D support can produce good results under relatively stable illumination
conditions.

In this paper, we follow a statistical modeling approach for landmark local-
ization that treats each landmark uniformly and independently. Mixture models
are used instead of feature templates to make the system scalable (Section 2).
Our 2D coarse localization method proposed in [7,13] is contrasted with a sim-
ilar 3D method and a 3D assisted 2D method. We use a structural correction
scheme that detects and corrects erroneous landmarks (Section 3). We evaluate
our scheme on FRGC dataset, and report our results in Section 4, followed by
our conclusions and indications of future work in Section 5.
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2 Unsupervised Local Feature Modeling

The method we propose is based on unsupervised modeling of features sampled
from around the landmark locations in the training set. We use mixtures of factor
analyzers (MoFA) as an unsupervised model. MoFA is in essence a mixture of
Gaussians where the data is assumed to be generated in a lower-dimensional
manifold. For each component of the mixture, the (d × d) covariance matrix Σ
is generated by a (d × p) dimensional factor matrix Λ and a (d × d) diagonal
matrix Ψ :

Σj = ΛjΛ
T
j + Ψ (1)

Ψ is called the uniqueness, and it stands for the independent variance due to each
dimension. With a small number of factors (represented with p) the model will
have a much smaller number of parameters than a full Gaussian, even though
the covariances are modeled. This is important, because a large number of pa-
rameters calls for an appropriately large training set.

In the mixture model, each distribution is potentially multimodal: We fit an
arbitrary number of factor analysis components to each feature set. To deter-
mine the number of components in the mixture and the number of factors per
component, we use an incremental model [12]. The IMoFA-L algorithm adds
components and factors to the mixture one by one while monitoring a sepa-
rate validation set for likelihood changes. With this approach, the number of
parameters is automatically adapted to the complexity of the feature space.

2.1 3D Model

The preprocessing of the depth map (or range image) is accomplished by eroding
and dilating it with a diamond-shaped structural element to patch the holes and
to eliminate the spikes. After downsampling 480×640 range images to 60×80, a
z-normalization is applied to depth values of valid pixels. 7 × 7 neighbourhoods
are cropped from around each landmark. These 49-dimensional features are min-
max normalized before modeling with MoFA.

In the test phase, the model produces a likelihood map of the image for each
landmark. Working on the downsampled images, we determine the landmark
locations on the coarse level. This may later be complemented with a fine-level
search for greater accuracy.

2.2 2D Model

We use a 2D Gabor wavelet-based method that was shown to have a good
accuracy for comparison [7]. In our 2D localization scheme, for each of cropped
landmark patch, Gabor wavelets in eight orientations and a single scale are
applied (See [13] for more details). Using more scales or neighbourhoods larger
than 7 × 7 did not increase the success rate. 49-dimensional vectors obtained
from each Gabor channel are min-max normalized and separately modeled with
MoFA. The likelihood maps computed for each channel are summed to a master
map to determine the most likely location for the landmark. In [13], we have
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shown that this model is more powerful in determining the local similarity than
the more traditional Gabor-jet based methods [16], producing large basins of
attraction around the true landmark.

2.3 3D Assisted 2D Model

Under a Lambertian illumination assumption, we can use 3D surface normals to
remove illumination effects from the 2D images. Basri and Jacobs have shown
that projecting to a 9-dimensional subspace spanned by the first spherical har-
monics adequately represents an arbitrary illumination on the object [1]. We use
the algorithm presented in [18] to recover the texture image (the albedo) with
spherical harmonics (See Figure. 1). From the albedo image, 7 × 7 patches are
cropped and modeled with MoFA, as in the previous section.

Fig. 1. (a) 2D intensity image. (b) 3D depth image. (c) Recovered albedo.

3 Structural Analysis Subsystem

To make the system robust to occlusions and irregularities, we have opted for
independent detection of all landmarks. Therefore, we need to take into account
that some of the landmarks may be missed. The purpose of the structural sub-
system is to find and correct these landmarks. The structural correction scheme
uses three landmarks (called the support set) for normalization. The normaliza-
tion procedure translates the mean of the support set to the origin, scales its
average distance from the origin to a fixed value, and rotates the landmarks so
that the first landmark in the support set (the pivot) falls on the y-axis. Af-
ter this transformation is applied to all the landmarks, the distribution of each
landmark can be modeled with a Gaussian (See [13] for more details).

In the training phase, we find the distribution parameters for all possible
support sets. In the test phase, a support set is selected and the corresponding
normalization is applied to all the landmarks. Selecting the best support set is
possible by looking at the number of inliers (i.e. landmarks that turn up within
their expected locations) and the joint likelihood under the support set. We can
also trade-off speed for accuracy, and stop at the first support set with at least
one inlier. For seven landmarks, there are 35 support sets of size three. Once
a support set is selected, we can re-estimate the location of a landmark that
falls outside its expected location by an inverse transformation applied to the
expected location.
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Denoting the distribution parameters of a landmark lj with N (μj , Σj), it is
labeled as an outlier if the likelihood value produced under this distribution falls
below a threshold:

L(lj , μj , Σj) < τ (2)

3.1 BILBO

In a recent paper, Beumer et al. proposed an iterative structural correction
scheme with a similar purpose [2]. The proposed algorithm (BILBO) first reg-
isters landmark locations to an average shape. During training, the registered
landmark locations are perturbed with small rotations, translations and scalings.
Then a singular value decomposition is used to compute a lower dimensional sub-
space. During testing, the landmark locations are projected to this subspace and
back. Deviations from the average shape are corrected when passing through the
bottleneck created by the subspace projection. A threshold value is monitored
to detect the change due to backprojection. This threshold is increased at each
iteration, and the algorithm stops once the change is smaller than the threshold.

We have constrasted our structural correction method (termed GOLLUM for
Gaussian Outlier Localization with Likelihood Margins) with BILBO. We have
used the parameter settings indicated in [2]. The experimental results of the
comparison is given in the next section.

4 Experimental Results

4.1 Experiment 1

For the first experiment, we have used the first part of the Notre Dame University
2D+3D face database (FRGC ver.1) [11]. There were 943 images, of which half
were used for training, one quarter for validation, and the rest for the test sets.
Samples with poor 2D-3D correspondence were left out to treat all methods
fairly. The results are reported separately for each different landmark type. The
same structural subsystem corrections are applied to landmarks located with
2D, 3D and 2D+3D methods. Table 1 shows the localization accuracies for each
landmark type when the acceptable distance to ground truth is less than or equal
to three pixels on the downsampled image.

It is observed that 2D performs better in localizing outer eye corners and
mouth corners. When coupled with the structural correction subsystem, the
performance of 2D and 3D systems are close. Since the 2D information is richer,
we expect it to produce a more accurate system when the training and test con-
ditions are similar. Our simulations show that the proposed GOLLUM scheme
outperforms it competitor BILBO. The albedo corrected images lose their dis-
criminative power, and perform sub-optimally.

4.2 Experiment 2

We have used the FRGC ver.2, Fall 2003 dataset for a more challenging experi-
ment. This dataset contains 1893 2D+3D images from the same set of subjects,
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Table 1. Localization results for the first experiment

Outer Eye Inner Eye Nose Mouth
Method Corners Corners Corners

2D 96.9 % 98.0 % 98.7 % 94.6 %
2D+GOLLUM 99.3 % 99.6 % 100.0 % 99.3 %
2D+BILBO 98.0 % 97.1 % 98.7 % 94.0 %

3D 87.9 % 98.4 % 96.7 % 85.4 %
3D+GOLLUM 95.7 % 99.3 % 98.2 % 88.1 %
3D+BILBO 89.7 % 98.2 % 96.9 % 88.8 %

ALBEDO 37.0 % 84.8 % 59.2 % 58.8 %
ALBEDO+GOLLUM 72.7 % 87.7 % 78.9 % 72.4 %
ALBEDO+BILBO 43.1 % 84.3 % 60.1 % 59.6 %

acquired six months later under expression variations and different lighting con-
ditions, some of them so challenging that even the manual landmarking is dif-
ficult. Without suitable illumination compensation, the 2D statistical model is
not expected to generalize correctly. However, 3D information is expected to be
robust to illumination changes. We have directly applied the IMoFA-L models
previously learned on ver.1 to this new dataset. Table 2 gives the localization
results at an acceptance threshold equal to three pixels.

The system based on 2D features fails in the absence of adequate illumination
compensation, whereas 3D depth features produce good results. The left and
right ends of the horizontal crevice between the lower lip and the chin produce
false positives for the mouth corners in 3D, and since this pattern conforms to
the general face configuration it is very difficult to detect. This is the source of
most of the mouth corner errors. The decrease in the mouth corner detection
accuracy is partly due open-mouthed expressions in ver.2. The albedo correction
increases the recognition accuracy for some landmarks, but there is no overall
improvement.

Table 2. Localization results for the second experiment

Outer Eye Inner Eye Nose Mouth
Method Corners Corners Corners

2D 18.4 % 9.9 % 0.2 % 31.8 %
2D+GOLLUM 18.4 % 10.8 % 1.8 % 31.7 %
2D+BILBO 17.0 % 15.5 % 1.4 % 29.9 %

3D 78.3 % 97.2 % 96.7 % 20.1 %
3D+GOLLUM 83.4 % 97.1 % 98.0 % 29.3 %
3D+BILBO 79.3 % 96.3 % 96.8 % 37.8 %

ALBEDO 3.5 % 12.9 % 1.5 % 21.5 %
ALBEDO+GOLLUM 3.9 % 12.8 % 2.3 % 21.2 %
ALBEDO+BILBO 4.1 % 15.1 % 2.6 % 20.6 %
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5 Conclusions

The 3D system based on range images has performed close to the 2D system in
Experiment 1, which contains illumination controlled 2D images. In the more
challenging Experiment 2, 3D has performed remarkably good at nose tip and eye
corners; but has failed at mouth corners, while the 2D system and 3D-assisted
2D system have very low detection rate. Our simulations show that the simple
albedo correction scheme improves 2D on some points, but the illumination
effects still deteriorate recognition. More elaborate albedo correction schemes use
synthetic images to find suitable bases and iteratively estimate the illumination
coefficients. This is left as a future work.

The local features of the faces provide reliable cues to identify facial landmarks
independently. This is particularly useful when some of the landmarks are not
available for detection. There may be acquisition noise that we frequently see
in the laser-scanned eye regions, the subject may have a scar or deformity that
renders some of the landmarks unrecognizable, there may be partial occlusions
by facial hair. In this case, an optimization approach that attempts to locate
all landmarks simultaneously may not converge to the correct solution. We pro-
pose an alternative approach that treats each landmark individually, and uses
the structural relations between landmarks separately. Our structural correction
scheme is shown to be superior to a recent competing technique.

Employing mixtures of factor analyzers allows us to strike a balance between
temporal and spatial model complexity and accuracy. Although a full-covariance
Gaussian mixture model has more representational power, it requires much more
training samples than the model presently employed. Our model is able to rep-
resent the data with a smaller number of parameters.

Once the landmarks are located in the coarse scale, a fine-resolution search can
be employed to refine these locations. The methods employed for the coarse scale
are available in fine scale as well. However, larger windows need to be sampled
in order to do justice to the local statistical information. In [13] a discriminatory
approach that uses 2D DCT coefficients was successfully used for large scale
refinement.
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16. Wiskott, L., Fellous, J.-M, Krüger, N., von der Malsburg, C.: Face recognition by
elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine
Intelligence. (1997) 19(7) 775-779

17. Yan, Y., Challapali, K.: A system for the automatic extraction of 3-D facial feature
points for face model calibration. In: IEEE International Conference on Image
Processing. (2000) 2 223-226

18. Zhang, L., Samaras, D.: Face Recognition Under Variable Lighting Using Har-
monic Image Exemplars. In: Computer Vision and Pattern Recognition Conference.
(2003) 1 19-25


	Introduction
	Unsupervised Local Feature Modeling
	3D Model
	2D Model
	3D Assisted 2D Model

	Structural Analysis Subsystem
	BILBO

	Experimental Results
	Experiment 1
	Experiment 2

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




