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Abstract— Automatically verifying the identity of a person by
means of biometrics (e.g., face and fingerprint) is an important
application in our day-to-day activities such as accessing banking
services and security control in airports. To increase the system
reliability, several biometric devices are often used. Such a
combined system is known as a multimodal biometric system.
This paper reports a benchmarking study carried out within
the framework the Biosecure DS2 (Access Control) evaluation
campaign organized by the University of Surrey, involving
face, fingerprint and iris biometrics for person authentication,
targeting the application of physical access control in a medium-
size establishment with some 500 persons. While multimodal
biometrics is a well investigated subject in the literature, there
exists no benchmark for a fusion algorithm comparison. Working
towards this goal, we designed two sets of experiments: quality-
dependent and cost-sensitive evaluation. The quality-dependent
evaluation aims at assessing how well fusion algorithms can per-
form under changing quality of raw biometric images principally
due to change of devices. The cost-sensitive evaluation, on the
other hand, investigates how well a fusion algorithm can perform
given restricted computation and in the presence of software
and hardware failures, resulting in errors such as failure to
acquire and failure to match. Since multiple capturing devices
are available, a fusion algorithm should be able to handle this
non-ideal but nevertheless realistic scenario. In both evaluations,
each fusion algorithm is provided with scores from each biometric
comparison subsystem as well as the quality measures of both
the template and the query data. The response to the call
of the evaluation campaign proved very encouraging, with the
submission of 22 fusion systems. To the best of our knowledge,
this campaign is the first attempt to benchmark quality-based
multimodal fusion algorithms. In the presence of changing image
quality which may be due to a change of acquisition devices
and/or device capturing configurations, we observe that the top
performing fusion algorithms are those that exploit automatically
derived quality measurements. Our evaluation also suggests that
while using all the available biometric sensors can definitely
increase the fusion performance, this comes at the expense of
increased cost in terms of acquisition time, computation time,
the physical cost of hardware and its maintenance cost. As
demonstrated in our experiments, a promising solution which
minimizes the composite cost is sequential fusion, where a
fusion algorithm sequentially uses match scores until a desired
confidence is reached, or until all the match scores are exhausted,
before outputting the final combined score.
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I. INTRODUCTION

A. Multimodal Biometric Systems

In order to improve confidence in verifying the identity of

individuals seeking access to physical or virtual locations, both

government and commercial organizations are implementing

more secure personal identification (ID) systems. Designing

a highly secure and accurate personal identification system

has always been a central goal in the security business. This

challenge can be met by resorting to multimodal biometric

systems [1], [2], [3] with the aim of increasing the security as

well as identification performance. The multimodal biometrics

aproach can be extended by explicitly considering the sample

quality of the input biometric signals and weighting the various

pieces of evidence based on objective measures of quality

of the biometric traits. This formulation of the multimodal

biometrics fusion problem is called quality-based fusion. It is

a research topic of increasing importance.

B. State-of-the-Art in Quality-based Fusion

The first known work on quality-based multimodal biomet-

rics is [4], which presented the problem under a framework

of Bayesian statistics. The result was an Expert Conciliation

scheme including weighting factors not only for the relative

accuracy of the experts but also for the confidence of the

experts regarding the scores for particular input samples. The

idea of relating sample confidence values to actual quality

measures of the input biometric signals was also introduced in

that work, but nevertheless not experimentally studied, under

the same framework, until [5]. The first experimental study

on quality-based fusion was limited to the use of a chimeric

bimodal database (where biometric traits of different persons

are combined to form a virtual identity), with the use of quality

measures manually generated by a human expert. A follow-

up work by the same researchers overcame the experimental

limitation and provided a more realistic experimental setup to

show the benefits of incorporating quality-based information

in standard fusion approaches based on discriminative [6], and

generative learning [7].

The concept of confidence of matching scores was consid-

ered in [8]. In that work the authors demonstrated the merit

of using measures of confidence in fusion. This research line

was further developed in [9], where confidence measures based
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on the margin between impostor and client score distributions

were developed.

Another research direction in quality-based fusion reported

in the literature is based on clustering [10]. In this work, qual-

ity measures obtained directly from the input biometric signals

were used to fuzzify the scores provided by the different

component biometric systems. The authors demonstrated that

fuzzy versions of k-means and Vector Quantization including

the quality measures tended to outperform the standard non-

fuzzy clustering methods. This work, to the best of our

knowledge, is the first one reporting experimental results of

quality-based fusion.

A more recent effort in quality-based fusion was reported

in [11] where the authors developed a scheme based on

polynomial functions. Quality measures were introduced in the

optimization problem for training the polynomials as weights

in the regularization term.

Other recent advances in quality-based fusion for multi-

modal biometrics are based on the following concepts: logistic

regression with quality measures as features [12], Bayesian

credence [13], Bayesian belief networks with quality measures

as inputs [14], and joint score and quality classifiers using the

likelihood ratio test [15], [16].

C. Motivation

The motivation for carrying out this study is as follows:

• The need for benchmarking quality-based fusion: While

there there are quite a few papers on quality-based fusion,

e.g.,[4], [5], [6], [12], [13], [16], to the best of our

knowledge, there exists no benchmark database on which

these algorithms can be compared and on which real

progress can be measured. Note that although the ex-

istence of multimodal corpora is a necessary prerequisite

of benchmarking multimodal and multi-algorithmic (i.e

employing different algorithms on the same biometric

data) fusion algorithms, it is not sufficient. For instance, it

is not straight forward to compare two fusion algorithms

in the case where each algorithm relies on its own set

of biometric subsystems. This is because an observed

improvement of a particular fusion algorithm may be due

to the superior performance of its biometric subsystems

rather than the merits of the fusion process itself. There

is therefore a need for benchmarking fusion algorithms

on a common ground, e.g., using the same biometric

match scores for the score-level fusion, or some common

features for the feature-level fusion.

• The cost implications: While using more biometric de-

vices and/or samples can increase the system perfor-

mance, as demonstrated in [17], [18], [1] (and references

therein) and elsewhere in the literature, such improvement

often comes at the expense of acquiring more data, and,

therefore, incurring more processing time, and, adding the

cost of hardware and its maintenance. All these aspects

add up to much higher global operating costs. In this

study, the abstract concept of cost is formally defined

and is used to assess multimodal biometric fusion against

such cost.

• System robustness: We expect that using more biometric

systems/devices can increase the robustness of the com-

bined system against spurious verification errors (false

acceptance and false rejection) of any single subsys-

tem/device, e.g., [1] and references therein. In addition

such a combined multimodal system can also robustly

handle software or operational failures such as failure-

to-extract or failure-to-match, or even hardware failure

(complete breakdown), resulting in invalid or missing

match scores. The latter property has not been thoroughly

investigated.

D. Cost Sensitive and Quality-based Fusion Evaluation Cam-

paign

The above aspirations have been addressed by designing

a benchmark database and organizing an evaluation campaign

using the database. Seven teams participated in our evaluation,

and altogether, they submitted 22 fusion algorithms.

The campaign was divided into two parts: quality-dependent

evaluation and cost-sensitive evaluation. The first challenge

was to evaluate quality-dependent fusion algorithms whereas

the second involved evaluating conventional fusion algorithms.

In both cases, we considered also the possibility of investigat-

ing two further sub-problems. The first one involved client-

specific or user-dependent fusion where one can train a fusion

classifier that is tailored to each identity claim, see e.g., [19]

and [20] for a more comprehensive survey. The second was

concerned with handling missing information. For instance,

when one or more biometric subsystems are not operational

due to failure to acquire or failure to match a biometric sample,

we require the fusion system to be able to output a combined

score. This is feasible because the sub-system match scores

contain redundant information (i.e., each can be seen as a

support for the same hypothesis although their actual values

may be in different ranges).

An obvious disadvantage of score-level fusion is that, by

using only scores, a lot of precious non-class discrimina-

tory information is lost, e.g., the quality of raw biometric

signal. Here are two examples: a person’s face can change

drastically with illness, diet, or age, as well as with the

application of cosmetics, a change in hair color or style,

or a sun tan; and a person’s voice can differ significantly

with congestion caused by a cold. This information is non-

class discriminatory because it cannot be used to distinguish

different individuals. Quality measures are expected to provide

measurements designed to capture these changes in ways that

could usefully be exploited in the fusion process. In this sense,

quality measures should in theory compensate for the loss of

information without sacrificing the practical advantage offered

by score-level fusion. In practice, however, tapping the quality

information, which is non-class discriminatory in nature, in

order to improve the classification performance, is not a trivial

problem.

In a cost-sensitive evaluation scheme, one considers a fusion

task as an optimization problem whose goal is to achieve

the highest performance (as a function of false acceptance

and false rejection decisions) at a desired minimum cost. We
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refer to “cost” as the price paid for acquiring and processing

information, e.g., requesting samples from the same device or

using more biometric devices (which entails longer processing

time). In this situation, a decision can be made even if

not all the subsystem match scores are observed. Therefore,

the proposed cost-based evaluation effectively considers the

redundancy of multimodal or multi-algorithmic information.

This subject has not been adequately addressed in the literature

on multimodal biometrics such as [18], [17], [1] because in

the work, it is assumed that all the match scores are available.

E. Contributions

The contribution of this paper is multi-fold:

• Benchmark for multimodal biometric quality-based fu-

sion: Thanks to the participation of seven teams, the

Biosecure multimodal biometric evaluation campaign re-

ceived 22 fusion systems for comparison. To the best of

our knowledge, this is the first time such a comparison

has been carried out.

• Cost-sensitive and robustness evaluation: We formally

introduce the problem of cost-sensitive evaluation of

multimodal fusion algorithms. Normally, the common

assumption behind multimodal biometric fusion is that all

match scores are observed. However, in reality, as match

scores and quality measurements are generated, failures to

extract or to match can occur. Such failures are common

especially when biometric templates and query samples

are acquired using different devices.

• Sequential fusion: This novel approach takes match scores

into account sequentially until a desired level of con-

fidence is reached, or until all the match scores are

exhausted. The algorithm is ideally suited to minimize the

cost of multimodal biometrics by dynamically controlling

the number of matching performed.

• A benchmark database of multimodal biometric score

and quality measures: The data sets used to benchmark

fusion algorithms has been made publicly available at

“http://face.ee.surrey.ac.uk/fusion”. The most similar ef-

fort to our attempt is the XM2VTS score-level fusion

benchmark data set [21]. However, the latter does not

contain any quality measures for each biometric modality.

F. Paper Organization

The paper is organized as follows: Section II categorizes and

summarizes the submitted classifiers. The Biosecure DS2 data

set (with score and quality measures) is detailed in Section III.

Section IV explains the two evaluation protocols. The results

of the evaluation can be found in Section V. This is followed

by conclusions in Section VI.

II. BRIEF DESCRIPTION OF SUBMITTED SYSTEMS

This evaluation involves 22 submissions of fusion systems

from seven sites. We will begin by introducing a common

notation and then describing the submitted fusion algorithms

using this notation. A complete list of the systems is shown

in Table I.

A. Classifier Categorization and Notation

Let yi ∈ R be the output of the i-th biometric subsystem

and let there be N biometric subsystem outputs, i.e., i ∈
{1, . . . , N}. For simplicity, we denote y = [yi, . . . , yN ]′,
where the symbol“′” is the matrix transpose operator. The

most commonly used fusion classifier in the literature takes

the following form:

f : y → ycom (1)

where ycom ∈ R is a combined score. We shall refer to

this classifier throughout this report as conventional fusion

classifier.

If the function f takes into consideration the signal quality,

then f is considered a quality-dependent fusion classifier.

Let the signal quality of the i-th biometric subsystem be

represented by a vector of Li measurements, qi ∈ R
Li . Note

that different biometric subsystems may have different number

of quality measures Li. For simplicity, we denote q as a

concatenation of all qi’s, i.e., q = [q′
1
, . . . ,q′

N ]′. The function

f in this case takes the following form:

f : y,q → ycom (2)

Any fusion classifier can be categorized into one of the two

forms just mentioned.

The function f can be a generative or a discriminative

classifier. In the former case, class-dependent densities are first

estimated and decisions are taken using the Bayes rule or the

Dempster-Shafer theory. In the latter, the decision boundary is

directly estimated. A common characteristic of both types of

classifiers is that the dependency among observations (scores

or quality measures) is considered.

There exists also another approach that we will refer to

as the transformation-based approach [22] which constructs

a fusion classifier in two stages. In the first stage, the match

scores of each biometric subsystem are independently trans-

formed into a comparable range, e.g., in the range [0, 1]. In the

second stage, the resulting normalized scores of all biometric

subsystems are combined using a fixed rule such as sum or

product [23]. The transformation-based fusion classifier based

on the sum rule, for instance, has the following form:

ycom =
∑

i

fnorm
i (yi) (3)

where fnorm
i is the transformation function of the i-th bio-

metric subsystem output. The one using the product rule

can be realized by replacing the sum (
∑

i) in (3) with a

product (
∏

i). For product fusion, the normalised scores have

to satisfy certain properties (i.e., being non-negative and in

a given range). The same applies to the minimum (mini),
the maximum (maxi) and the median rules, i.e., taking the

minimum, the maximum and the median of the transformed

values, respectively. These approaches have been investigated

in [22]. Among the fixed rules, the sum rule is commonly

found to be the most effective in many applications. By

interpretting the classifier outputs as probabilities, Kittler et

al. [23] showed that the sum rule is resilient to errors affecting

the individual classifier outputs. An intuitive explanation is that
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by summing two variables (regardless of whether the output

is probability or not), the resultant summed variable will have

smaller variance than the average variance of the individual

variables. The extent of the reduction of variance of the

combined variable (fusion output) depends on the dependency

(correlation) among the variables (classifier outputs) contribut-

ing to the sum. Using the average rule (which defers from sum

by a negligible constant factor), the relationship between the

correlation among the constituent classifier outputs and the

fusion classifier performance was clarified by Poh and Bengio

in [24].

In each of the above three cases, the following decision

function can be used:

decision(y) =

{

accept if ycom > ∆
reject otherwise,

(4)

where ∆ is a global decision threshold. We replace ∆ with

∆j for the j-th user if the decision threshold is client-specific.

In some of our discussions, it will be convenient not to

distinguish between the conventional and quality dependent

fusion classifiers. This will be achieved by using common

notation. In particular, for the conventional classifier, this can

be further described by the feature vector xi, which is defined

as xi ≡ yi where yi is a vector of biometric subsystem outputs

dependent on the i-th biometric modality. The feature vector

of a quality-dependent fusion classifier, on the other hand,

will take the input xi ≡ [y′
i,q

′
i]
′ instead. Following the same

convention as before, we will write x as a concatenation of

all xi’s, i.e., x = [x′
1
, . . . ,x′

N ]′.
In the discussion that follows, we will elaborate several

forms of f used in our evaluation. We will, however, not

discuss the algorithms in great detail but instead we shall

attempt to capture the key intuitive ideas behind the methods.

For details, the interested reader should refer to the relevant

citations.

B. Submitted Systems

1) Generative classifier estimating the posterior probabil-

ity: For the generative classifier, one can infer the probability

(or posterior probability) of being a client using the following

Bayes rule:

ycom = P (C|x) =
p(x|C)P (C)

p(x|C)P (C) + p(x|I)P (I)
, (5)

where p(x|k) is the density of x, or a likelihood function

conditioned on the class label k which is either client or

impostor, i.e., k ∈ {C, I}, and P (k) is the prior class

probability. Being a probability, ycom is in the range [0, 1].
This classifier is also known as a Bayes classifier. The Bayes

optimal decision threshold as defined in (4) is ∆ = 0.5.

Referring to Table I, the fusion classifier GET-1 and CWI-

IMOFA are of this form. In GET-1, the likelihood function

p(x|k) was estimated using a mixture of Gaussian compo-

nents, or a Gaussian Mixture Model (GMM) [25], i.e.,

p(x|k) =

Nk
cmp

∑

c=1

wk
cN (x|µk

c ,Σk
c ), (6)

where the c-th component class-conditional (denoted by k)

mean vector is µ
k
c and its covariance matrix is Σk

c . There are

Nk
cmp components for each k = {C, I}.

In CWI-IMOFA, a mixture of factor analyzers [26] was used

instead. While the density estimated can also be written as in

(6), the number of parameters needed is effectively smaller.

This is because a factor analyzer assumes that a small num-

ber of low-dimensional latent variables (factors) z cause the

correlation that is gauged by the c-th component conditioned

on class k. Dropping the superscript k for notational economy

(since each term is conditioned on the class k), each factor

analyzer component can be described by:

x − µc = Λcz + ǫc (7)

Λc is called the factor loading matrix (for component c). This

matrix characterizes the dependency of data points on each

factor. ǫc is the Gaussian noise and is assumed to be distributed

N (0, Ψ), where Ψ is a diagonal matrix, interpreted as sensor

noise common to all components. When x is d-dimensional,

Σc is d × d, whereas with p < d factors, Λc is d × p.

If there are missing observations in x, one can still cal-

culate the marginal distribution of the observed features by

marginalizing away the missing features. For a Gaussian

mixture distribution, calculating its marginal distribution can

be achieved efficiently by manipulating the Gaussian mean and

covariance matrices [27], thereby, dispensing with the need for

explicit integration. Such an approach is implemented by the

organizer (UniS), referred to as the GMM-Bayes classifier.

In contrast to UniS’s GMM-Bayes classifier, the GET-1,

2 and 3 submissions did not deal with the missing obser-

vation using Gaussian marginals. Instead, whenever there is

a missing observation, GET’s GMM-bayes systems compute

the fused score using a transformation-based strategy. First,

each system output is normalized to the range of [0, 1] using

the empirically observed minimum and maximum value (Min-

Max normalization) [22]. Then, the average rule is used to

combine the normalized scores. Such a strategy works because

the outputs of the transformation-based fusion approach and

that of the GMM-bayes classifier are in the same range, i.e.,

[0, 1], although only the latter case can be interpretted as

probability.

The CWI-IMOFA submission dealt with the missing values

by replacing them with their corresponding median values. The

authors found experimentally (on the development set) that this

did not affect the generalization performance significantly.

2) Generative classifier using the log-likelihood ratio test:

An alternative generative approach based on the log-likelihood

ratio test, which relies on the Neyman-Pearson lemma [28],

takes the following form:

ycom = log
p(x|C)

p(x|I)
. (8)

Its associated decision threshold (as in (4)) is optimal when

∆ = − log
P (C)

P (I)
.

In practice, the output ycom is a real (positive or negative)

number in the range of hundreds or thousands.
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Adopting the Naive Bayes strategy, (8) can be computed as:

ycom = log

∏

i p(xi|C)
∏

i p(xi|I)
=

∑

i

log
p(xi|C)

p(xi|I)
=

∑

i

yllr
i ,(9)

where we defined:

yllr
i ≡ log

p(xi|C)

p(xi|I)
.

We shall now deal with two cases: conventional fusion

where xi = yi, and quality-based fusion where xi = [q′
i, yi]

′.

In the first case, the function is yi → yllr
i . This is a one-to-

one mapping function (for each modality), therefore, a possible

function for fnorm
i : yi → yllr

i (see (3)). This can be seen as a

transformation-based approach with the fusion operator being

the sum rule. Such a naive Bayes classifier was provided by

UniS.

The second (quality-dependent) case has been reported in

the literature [29]. Note that the observation vector xi =
[q′

i, yi]
′ has 1+ Li dimensions. This increased dimensionality,

especially in the case Li ≫ 1 (due to qi), can possibly pose

a potential estimation problem, i.e., modeling the increased

number of dimensions may be less effective as it is usually not

supported by the required exponential increase in the number

of training samples (in the worst case). In fact, there is only a

fixed number of training samples to design a fusion classifier.

Apart from the baseline naive Bayes fusion, the UniS

submission also includes a version that considers the quality

measures in its density estimation but does not suffer from

the above mentioned increased dimensionality of the [q′
i, yi]

′

space. The model used here assumes that the biometric subsys-

tem outputs and the quality measures are conditionally inde-

pendent given the quality state, represented by Q. The authors

defined a quality state to be a cluster of quality measures that

are “similar” to each other [16]. The rationale of this model

is that data belonging to the same cluster of quality measures

will share the same characteristic. Therefore, it is sensible to

construct a fusion strategy for each cluster of data (of similar

quality). The consequence of this is that the complexity of the

fusion classifier now is no longer directly dependent on the

dimension of the quality measures qi, but is dependent on the

number of clusters. In their submitted implementation, these

clusters are found using a GMM model (6), but constrained

to be between one and three (as a means to control the model

complexity). The GMM parameters are estimated using the

Expectation Maximization (EM) algorithm. For each of the

biometric subsystem outputs yi, the following quality-based

normalization output is computed:

yllr
i = log

∑

Q p(yi|C, Q)p(Q|qi)
∑

Q p(yi|I, Q)p(Q|qi)
, (10)

where Q denotes a cluster of quality measures. The sum over

all the quality states of Q is necessary since the quality state is

a hidden variable; only yi and qi are observed. Note that the

dimensionality involved in estimating p(yi|k, Q) is effectively

one since yi is one-dimensional and Q is a discrete variable.

The partitioning function P (Q|qi) : Li → R refers to the

posterior probability that qi belongs to the cluster Q. This term

is also known as responsibility in the GMM literature [25].

There are at least three possible ways of clustering the

quality measures:

• In the first approach, one divides the quality measures

according to the device which was used to collect the

biometric samples (from which the quality measures have

been derived). If there are Nd devices, there will be Nd

clusters of quality measures. In this case, we say that the

clusters Q are device-dependent. This approach was first

reported in [30].

• The second approach can be considered a further refine-

ment of the first approach. Since there is no guarantee

that the quality is consistent over all devices, it may be

desirable to further find the natural clustering that exists

for each device-dependent cluster of quality measures.

For the case of a single device, such a study was reported

in [16] where in order to combine several face experts

(hence intramodal fusion), a separate fusion strategy was

devised for each cluster of quality measures.

• The third approach would consider finding a natural

clustering of quality measures in a device independent

manner.

The UniS submission in Table I is based on the first approach.

Since the device is known during training (but not during

testing), instead of using EM to infer the quality state, the

quality state is probabilistically estimated, i.e., P (Q|qi) is

estimated using a supervised approach. In the implementation

of (10), the following Bayesian classifier (with equal class

priors) was used:

P (Q|qi) =
p(qi|Q)

∑

Q∗

p(qi|Q∗)
. (11)

where the device-specific density of quality measures, p(q|Q∗)
(for a given Q∗), was modeled using a GMM.

Note that the three procedures mentioned above, i.e., (9)

(including both the conventional and quality-based fusion) and

(10), output yllr
i for i = 1, . . . , N that are directly combined

using the sum rule (9). Hence, if a particular subsystem fails

to output any score observation, the corresponding terms in

the sum will be missing, hence not contributing to the final

output.

The submission by JHUAPL can be interpreted as a realiza-

tion of (9) (except that log was not used) and is very similar to

(10) which involves estimating the density p(yi|k, Q). Instead

of clustering Q using EM, the authors binned the data to

compute a histogram. The binning process can only work

for scalar quality measures but not for a vector of quality

measures. In order to generalize to the latter case, one must

resort to the clustering approach.

3) Generative classifier using the Dempster-Shafer Theory:

The Dempster-Shafer theory of evidence [31] attempts to

reflect uncertainty of information sources by degrees of belief.

The information sources, or frames of discernment, in our

case, refer to the class labels k = {C, I}. While in the Bayesian

theory, these two events are disjoint, in the Dempster-Shafer

theory, one considers all possible combinations, i.e., 2|k| =
Ψ = {{C, I}, {C}, {I}, φ}, noting that information sources,

unlike events in the usual probability interpretation, are not
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necessarily disjoint. However, similar to probability, only one

unit of mass is distributed among all the possible information

sources. Let m : Ai → R be the function that assigns a mass

to the information source Ai. The function m is subject to the

following constraints:

0 ≤ m(Ai) ≤ 1, Ai ∈ 2Ψ (12)

m(φ) = 0
∑

Ai∈2Ψ

m(Ai) = 1

A new mass assignment, m, is then combined with the mass

distribution, mprev, derived from all previous information

sources using Dempster’s Rule of Combination , i.e., (13). The

result of this task is a new distribution, m∗, that incorporates

the joint information provided by the sources selected up to

this moment.

m∗(Ai) = (m ⊕ mprev)(Ai) =

=
1

1 − Conflict

∑

Ap∩Aq=Ai

m(Ap)mprev(Aq)(13)

where

Conflict =
∑

Ap∩Aq=φ

m(Ap)mprev(Aq). (14)

Note that the sum in (13) iterates over all the information

sources containing Ai. The conflict term is a normalizing

factor and displays the conflict between the new evidence and

the actual knowledge.

After selecting one information source (i.e. one biometric

score value), the mass distribution is derived in the following

way. The score value is interpreted as a percentage of certainty

that the claimed identity is true, and thus assigned to the set C

(client or genuine user). Another portion of mass is assigned

to the set containing the whole frame of discernment (15).

m({C}) = ynorm
i

m(Ψ) = 1 − ynorm
i , (15)

noting that yi are normalized into the range [0, 1]. The

combined scores can be expressed by:

ycom = mcom({C}) with mcom =
⊕

i

mi (16)

where mi is the mass distribution defined according to (15),

and
⊕

i denotes the application of Dempster’s rule of combi-

nation (13) for all selected biometric subsystem outputs. Note

that mi with missing observation will not participate in the

Dempster’s rule of combination. This operation is analogous

to the sum rule in probability, i.e., (9).

This submission was provided by JR (see Table I).

4) Discriminative classifier using Linear Logistic Regres-

sion: LR is defined as:

ycom ≡ P (C|x) =
1

1 + exp(−g(x))
, (17)

where

g(x) =

M
∑

j=1

βjxj + β0, (18)

where xj ’s are elements in x. The weight parameters βj are

optimized using gradient ascent to maximize the likelihood of

the training data given the LR model [32]. It can be shown

that the following relationship is true:

g(x) = log
P (C|x)

P (I|x)
. (19)

We shall introduce the Naive Bayes version of logistic

regression. This can be done by replacing x in (18) with xi,

recalling that xi represents the modality-dependent observa-

tion (which can be score alone, or score augmented with the

quality measures derived from the same modality). By using

the Naive Bayes assumption, one can combine gi(xi) for xi

of different modality i in the following way:

ycom =
∑

i

yllr
i =

∑

i

gi(xi) =
∑

i

log
P (C|xi)

P (I|xi)
. (20)

The submission from UPM used a version of LR in a way

that incorporates the quality measures [33]. The fundamental

idea is to design a device-dependent score-normalization strat-

egy via LR for each device. During inference, the acquisition

device is inferred so that the score is normalized according

to the inferred device. The resulting normalized match scores

are combined using (20). In this context, the term xi in (20)

contains only the score yi and the quality measurment qi is

not used.

The device-dependent normalization procedure is defined

by:

yllr
i = gQ∗

(yi) (21)

where gQ is the function shown in (18) except that one such

function is created for each cluster of device-dependent quality

Q. Among all the possible states of Q (one such Q being

associated with a device), the chosen Q∗ is selected so as to

maximize P (Q|qi), the posterior probability of Q given the

quality vector qi:

Q∗ = argmax
Q

P (Q|qi)

The “Unis qfuse” submission [12] is based on the logistic

regression shown in (17) except that the vector x is a reduced

second-order polynomial expansion between the score vector

y and the quality measures q, i.e., xi ≡ [yi,q
′
i, (yi ⊗ qi)

′]′

where ⊗ is known as a tensor product whose output is a single

column vector. According to this operator, each element in yi

is multiplied with each element in qi. Note that the proposed

method does not take into consideration [yi×yi]
′ nor [qi⊗qi]

′

in order to keep the number of parameters to be estimated

small, while at the same time allowing the model to gauge

the interaction between scores and quality measures. The final

input to the logistic regression is x = [x′
1
, . . . ,x′

N ]′. In so

doing, one also avoids the need to model the unnecessary

interaction among elements in yi and qj , i.e., [yi⊗qj ]
′ where

i 6= j are indices of different subsystem outputs.

5) Error-based fusion classifier: The submission by

AMSL-BIO InvLW attempts to combine subsystem outputs

based on their authentication performance on the development
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set. The fusion score is constructed as a linear combination of

matching scores, i.e.,

fcom =
∑

i

fnorm
i (yi)wi

where fnorm
i : →[0, 1] is known as a score normalization

procedure and wi is the weight associated to the i-th subsystem

subject to the constraint
∑

i wi = 1.

The following linear weight is used for each i-th subsys-

tem [34]:

wi =

{

eeri
P

N
j=1

eerj
if eeri

P

N
j=1

eerj
≥ 0.5

N

0 otherwise
(22)

where eeri is the equal error rate (EER) of the i-th subsystem

measured on the development score set. The first condition

ensures the subsystem whose weight is smaller than 0.5/N
(recalling that N is the number of subsystems) will not

contribute to the final score because its output is considered

insufficiently useful. In order to deal with missing matching

scores, mean values of impostor and genuine score distri-

butions are calculated. A missed score is replaced with the

average of these two values.

6) UniS: Fixed Rule Quality Dependent Fusion Classifier:

The subsystem outputs y are divided into two groups: those of

higher quality and those of lower quality. Let us denote these

two groups by {yhigh
p } and {ylow

q }, where p ∈ {1, . . . , P}
and q ∈ {1, . . . , Q} are indices of the subsystem outputs.

The idea is that one combines the groups of similar quality

(high or low) using the sum rule whereas among the groups of

different scores using the product rule. The justification is that

scores of different quality tend to disagree, implying higher

independence and so the product rule may be more effective

in this case. Similarly, scores of similar quality (high or low)

tend to agree with each other, implying higher dependence and

so the sum rule may be more effective. The resulting combined

scores can be written as:

ycom =







1

P

∑

m yhigh
p × 1

Q

∑

n ylow
q if P > 0 and Q > 0

1

P

∑

m yhigh
p if Q = 0

1

Q

∑

n ylow
q if P = 0

(23)

The last two cases take care of the situation where one group or

the other is not observed. A score is considered of high quality

if its corresponding quality measure is higher than qi − σqi

where qi ∈ R is a quality measure, qi is the average of qi and

σqi
is its standard deviation.

In case of an array of quality measures, the quality measures

are normalized using the Min-Max normalization, and the

average is computed to represent the quality measure for a

sample.

7) Other Classifiers: The list of classifiers covered here is

not meant to be exhaustive, but considers only the submitted

systems. Another submitted fusion classifier is CWI-SVM’s

Support Vector Machine (SVM), a discussion of which can

be found in [35]. SVM has also been used elsewhere in the

literature for biometric fusion, e.g., [36]. Finally, a general

survey of fusion classifiers can be found in [1].

C. Sequential Fusion

Sequential fusion is a fusion strategy where the match scores

to be combined are considered sequentially, until a certain

level of confidence is reached, or all the match scores are

exhausted. The motivation is that for most access attempts

(samples), a very few match scores are needed to reach a high

level of confidence. In contrast, samples that are classified

with low confidence are those that are found near the decision

boundary and are necessarily sparse. Since significantly fewer

number of match scores are needed, on average, for each

access attempt, the overall cost is expected to be lower.

Among the submitted systems, only CWI-IMOFA and

GET2 (cost) adopt sequential fusion strategies. In both sys-

tems, the training of the system remains the same. However,

during testing, different strategies are used. Both rely on an

upper and a lower threshold, corresponding to the desired

levels of confidence to accept a client and to reject an impostor,

respectively.

For the CWI-IMOFA method, the modalities are considered

in the following order: face, iris, fingerprint. The following

decision strategies are adopted:

• If the face or the iris is present, do not take the finger-

prints into account at all.

• If the posterior probability of observing a genuine user is

higher than the upper threshold, at any time, output that

probability and do not consider the rest of the modalities.

• If the posterior probability of observing a genuine user

is lower than a percentage of the threshold (5 per cent

in the submitted version), output that probability and do

not consider the rest of the modalities.

For the GET2 systems, the following strategy was adopted.

The face modality is used first. If a decision cannot be made,

iris or fingerprint is then used depending on the face score and

quality measures. Then, if a decision is not possible with the

two match scores (and their associated quality measures), a

third score is used and so on until the eight scores (and their

associated quality measures) are exhausted [37].

III. THE BIOSECURE DS2 DATA SET AND REFERENCE

SYSTEMS

A. The BioSecure Database as a Test Bed

In order to realize the cost sensitive and quality-based

fusion evaluations mentioned in Section I-D, we constructed

a database with scores as well as quality measures for each

access using the BioSecure multimodal biometric database1.

Since the input to all fusion algorithms is the same, they can

be compared on equal grounds. To date, there exists no similar

test bed suitable for quality-dependent fusion algorithms nor

cost-sensitive evaluation. A similar work in this direction

is [21]. However, the match scores were not supplemented

by quality measures.

The Biosecure database was collected with the aim to

integrate multi-disciplinary research efforts in biometric-based

identity authentication. Application examples of such an in-

vestigation are to meet the trust and security requirements for

1http://biometrics.it-sudparis.eu/BMEC2007
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TABLE I

A LIST OF SUBMITTED SYSTEMS

System name Q C Characteristics

AMSL-BIO InvLW (Ref.
Sec II-B.5)

× √
transformation based, weighted sum rule is used with weights being inversely proportional to Equal Error
Rate empirically calculated from the development set. See [34].

AMSL-BIO QW (Ref.
Sec II-B.5)

√ × transformation based, weighted sum rule is used with weights being inversely proportional to the quadratic
term of Equal Error Rate empirically calculated from the development set. See [34].

CWI SVM (Ref. [35])
√ √

discriminative classifier, quality-independent, train with high quality data only

CWI IMOFA (Ref. Sec II-
B.1)

√ √
Bayesian classifier (generative) whose class-conditional densities are each independently estimated using
an Incremental Mixture of Factor Analyzers [26]. The classifier estimates the posterior probability of client
given the observed scores. It is quality-independent and uses sequential strategy with double thresholds
(for cost-sensitive evaluation).

JHUAPL (Ref. Sec II-B.1)
√ × Bayesian belief network (generative classifier), quality-dependent, use all available scores. See [14]

JR (Ref. Sec II-B.3)
√ √

Dempster-Shafer theory of evidence. A biometric subsystem is chosen to participate in the fusion if it
maximizes the following criterion:

benefit = yi ∗ (2 − cost). (24)

where cost takes on a value of one for a different device or 0.3 for reusing the same device. More
explanation about the cost assignment can be found in Section IV-A.

GET 1 (Ref. Sec II-B.1)
√ √

Bayesian classifier with equal class priors was used, i.e., (5) with P (C) = P (I) = 0.5. The density
p(y|k) is estimated using a mixture of Gaussian components [25]. In case of missing values, scores
are independently normalized into [0, 1] using the empirically observed minimum and maximum value,
known as the Min-Max normalization [22]. The average rule is used to combine the normalized scores.
See [37]

GET 2 (cost) (Ref. Sec II-
B.1)

× √
Similar to GET 1 (cost) except that scores are taken into account sequentially until all channels of data
are exhausted or the combined score is smaller than lower threshold or greater than a higher threshold.
See [38].

GET 2 (quality)
√ × Similar to GET 1 except that each fusion classifier is designed specifically for each of the four cases as

mentioned in Section IV-B.

GET 3 (quality) (Ref.
Sec II-B.1)

√ × This is an enhanced version of GET 2 (quality) which also employs sequential selection of channels (as
in the GET 2 cost-based system).

UniS qfixed (Ref. Sec II-
B.6)

√ √
transformation-based, quality-dependent, selectively switches between sum and product rule depending
on the quality measures. See [39].

UniS qfused (Ref. Sec II-
B.4)

√ √
logistic regression (discriminative) modeling the posterior probability of being a client given scores and
quality measures as observation, i.e., P (C|y, q). See [12].

UniS Naive Bayes (Ref.
Sec II-B.4)

× √
Discriminative classifier, modeling

Q

i
P (C|yi) where P (C|yi) is estimated using logistic regression.

See [28] for Naive Bayes and [40] for logistic regression.

UniS BNQ (Ref. Sec II-
B.2)

× √
Generative classifier that estimates the device identity directly (see (10)). The sum rule is used to combine
all ynorm

i
’s that are observed. See [30].

UPM (cost) (Ref. Sec II-
B.4)

× √
transformation based, with each transformation function (one for each channel of data) being a logistic
regression, mapping scores into log-likelihood ratios. The max rule is used to combine the scores. See [33].

UPM (quality) (Ref.
Sec II-B.4)

√ × Similar to its cost-based counterpart, except that the transformation function is device-specific for the
face and device-independent for the fingerprint. The max rule is used to combine the scores. See [33].

Legend: Q = Quality-based evaluation; C = cost-sensitive evaluation√
means used in quality-based and/or cost-sensitive evaluation; × means not used

AMSL-BIO is a submission from University of Magdeburg; GET from Telecom and Management SudParis (formerly GET - Institut National des
Telecommunications); UPM from Universidad Politecnica de Madrid; UniS from University of Surrey; JR from Joanneum Research; CWI from Centrum
voor Wiskunde en Informatica; and JHUAPL from Johns Hopkins University Applied Physics Laboratory.

building access systems using a desktop-based or a mobile-

based platform, as well as applications over the Internet such

as tele-working and Web or remote-banking services. As long

as data collection is concerned, three scenarios have been

identified, each simulating the use of biometrics in remote-

access authentication via the Internet (termed the “Internet”

scenario), physical access control (the “desktop” scenario),

and authentication via mobile devices (the “mobile” scenario).

While the desktop scenario is used here, the proposed two

evaluation schemes can equally be applied to the remaining

two data sets.

The desktop scenario data set contains the following bio-

metric modalities: signature, face, audio-video (PINs, digits,

phrases), still face, iris, hand and fingerprint. However, only

still face, iris and fingerprint are used for the evaluation

schemes proposed here. This data set is collected from six

European sites (only four are being used at the writing of this

report). Although the data acquisition process is supervised,

the level of supervision is extremely different from site to

site.

This database contains two sessions of data separated by

about one month interval. In each session, for each subject,

two biometric samples are acquired per modality per device,

hence resulting in 4 samples per modality per device (and

per person) over the two sessions. There are several devices

for the same biometric modality. The forgery data collected

simulate PIN-reply attacks and imitation of dynamic signature

(with several minutes of practice and with the knowledge of

the signature dynamics). The volunteers are selected to have

both genders in somewhat equal proportions of ages with the

following distribution: 2/3 in the range 18–40 of age and 1/3

above 40.

Table II presents the 24 channels of data available. A

channel of data is composed of the following quadruples:
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TABLE III

REFERENCE SYSTEMS AND QUALITY MEASURES ASSOCIATED WITH EACH

TO BIOMETRIC MODALITY

Modality Reference
systems

Quality measures

Still Face Omniperception’s
Affinity SDK2

face detector;
LDA-based face
verifier

face detection reliability, bright-
ness, contrast, focus, bits per pixel,
spatial resolution (between eyes),
illumination, background unifor-
mity, background brightness, spec-
ular reflection, glasses, rotation in
plane, rotation in depth and devia-
tion from the frontal pose (all avail-
able from Omniperception’s Affin-
ity SDK)

Fingerprint NIST Fingerprint
system

texture richness [41] (based on lo-
cal gradient)

Iris A variant of Li-
bor Masek’s iris
system

texture richness [42], difference be-
tween iris and pupil diameters and
proportion of iris used for matching

(biometric trait, the acquisition device of a template, the

acquisition device of a query sample, matching algorithm).

When the acquisition device used to prepare a template (during

enrollment) is different from the one used to acquire a query

sample, the matching is called cross-device matching, and

the opposite is called same-device matching. There are 17

channels of data available under the same-device matching.

For example, a left index fingerprint acquired using an optical

fingerprint sensor is considered a channel of data. Using the

notation presented in Table II, this channel of data is referred

to as “fo5”. The 17 channels of data, presented in order are

fa1, fnf1, fwf1, ir1, ir2, fo1, fo2, fo3, fo4, fo5, fo6, ft1, ft2,

ft3, ft4, ft5 and ft6. These 17 channels of data are all that

is available to perform matching of data acquired using the

same biometric device. The cross-device matching can only

be performed on the face biometric and the six fingerprints

(hence seven channels of data) because for each of these

channels of data, two devices were available. These channels

of data are prefixed with “x” (for “cross-device”). We only

considered the scenario where the template data is acquired

with high quality device whereas the query data is acquired

with one of a lower quality (post-determined by judging from

the verification performance of the devices).

While there are 24 channels, we need only three reference

systems, corresponding to the three chosen biometric modali-

ties, i.e., face, fingerprint and iris. We also need three pieces of

software to extract their respective quality measures directly

from the acquired images. Table III lists the reference systems

of the three biometric modalities as well as their respective

quality measures.

Among the 14 quality measures extracted, six are face-

related quality measures (hence relying on a face detector), i.e.,

face detection reliability, spatial resolution between the eyes,

presence of glasses, rotation in plane, rotation in depth and

degree to which the face presentation is frontal. The remaining

eight measures are general purpose image quality measures as

defined by the MPEG standards. These quality measures were

obtained using the Omniperception proprietary Affinity SDK.

There is only a single fingerprint quality measure and it is

based on the implementation found in [41]. It is an average

fingerprint gradient computed over local image patches. When

too much pressure is applied during fingerprint acquisition,

the resulting fingerprint image usually has low contrast. Con-

sequently, a minutia-based fingerprint matcher (which is the

case for the NIST fingerprint system) is likely to under perform

with this type of image. The converse is also true for high

contrast and clear fingerprint images.

Three iris quality measures are used. The first one, i.e.,

texture richness measure, is obtained by a weighted sum

of the magnitudes of Mexican hat Wavelet coefficients as

implemented in [42]. The other two quality measures are

functions of estimated iris and pupil circles. The first one

is the difference between iris diameter and pupil diameter.

If this difference is small, the iris area to be matched will

be small, hence implying that the match scores may not be

reliable. The second measure is the relative proportion of the

mask diminishing the usable iris area for matching. A mask

is needed to prevent matching on areas containing eyelashes

and specular lights, for instance. Unfortunately, due to bad iris

segmentation, and possibly suboptimal threshold to distinguish

eyelashes from iris, our iris system is far from the performance

claimed for Daugman’s implementation [43].

IV. THE EVALUATION PROTOCOL

The objective of an evaluation protocol is to provide a means

to partition the development (or training) and the evaluation

(test) data sets in such a way that fusion algorithms can be

compared on equal grounds, avoiding optimistic performance

bias of the test result.

The current release of the desktop scenario contains 333

persons. A newer version, yet to be released, contains some

500 persons. For each person, four samples per channel of

data are available. The first sample of the first session is used

to build a biometric template. The second sample of the first

session is used as a query to generate a genuine user match

score of the first session whereas the two samples of the second

session are used in a similar way to generate two genuine

user match scores. A template is the data sample used to

represent the claimed identity whereas a query is the sample

with which the template is compared. The impostor scores

are produced by comparing all four samples originating from

another population of persons excluding the reference users.

It is important to distinguish two data sets, i.e., the develop-

ment and the evaluation sets. The development set is used for

algorithm development, e.g., finding the optimal parameters

of an algorithm, including setting the global or client specific

decision threshold. An important distinction between the two

sets is that the population of users in these data sets are

disjoint. This ensures that the performance assessment is

unbiased. There are 51 genuine users in the development set

and 156 in the evaluation set. These two sets of users constitute

the 207 users available in the database. The remaining 126

subjects are considered as an external population of users who

serve as zero-effort impostors.

The development impostor score set consists of two score

sets of equal size, each having 103 × 4 samples, i.e., 103
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TABLE II

A LIST OF 24 CHANNELS OF MATCH SCORES) GENERATED FROM THE BIOSECURE DS2 DATABASE

Label template ID {n} Modality Template Sensor Query Sensor Remarks

fa 1 Still Face web cam web cam Frontal face images (low resolution)
fnf 1 Still Face CANON CANON Frontal face images without flash (high resolution)
fwf 1 Still Face CANON CANON Frontal face images with flash (high resolution)
ir 1–2 Iris image LG LG 1 is left eye; 2 is right eye
fo 1–6 Fingerprint Optical Optical 1/4 is right/left thumb; 2/5 is right/left index; 3/6 is right/left

middle finger
ft 1–6 Fingerprint Thermal Thermal 1/4 is right/left thumb; 2/5 is right/left index; 3/6 is right/left

middle finger

xfa 1 Still Face CANON web cam Cross-device matching
xft 1–6 Fingerprint Optical Thermal Cross-device matching. 1/4 is right/left thumb; 2/5 is right/left

index; 3/6 is right/left middle finger

For example, fo2 refers to the channel of data obtained by acquiring right index fingerprints using an optical fingerprint sensor. The web cam model is
Phillips SPC 900. The model of CANON digital camera is EOS 30D. The iris capturing device is LG3000. The thermal sensor acquires a fingerprint as a
subject sweeps his/her finger over it. The optical sensor acquires a fingerprint impression by direct contact (no movement required). The first seven rows show
same-device matching and the last two show cross-device matching.

persons and each contributes 4 samples. These two score sets

were used in conjunction with the first- and second-session

genuine match scores, respectively. This design ensures that

the impostors used in Sessions 1 and 2 are not the same. For

instance, when training a fusion algorithm, Session 1 data can

be used to learn the parameters of the fusion classifier and

Session 2 data can be used as a validation data set. Such a

characteristic is important for algorithm development.

The evaluation impostor score set also further consists of

two data sets, each having 51 and 126 subjects set apart

as zero-effort impostors, used for Session 1 and Session 2

data, respectively. Note that the 51 “impostor subjects” of

the Session 1 evaluation set are actually genuine users in the

development data set. This does not contribute any systematic

bias when measuring the performance because the genuine

users are disjoint in both the development and evaluation data

set. The motivation for using two different impostor popula-

tions in the evaluation data sets for Sessions 1 and 2 again

is to avoid systematic and optimistic bias in assessing client-

specific fusion classifiers trained on the Session 1 data. Unlike

the common fusion classifiers reported in the literature [1]

(and references therein), client-specific fusion classifiers adapt

themselves to each genuine user or claimed identity. Under

our experimental design, these classifiers can further use the

Session 1 evaluation data for training but must use the Session

2 evaluation data for assessing the performance. Having two

different sets of impostors will thus avoid the situation where

a fusion classifier is tested on impostor data on which it has

already been trained to distinguish the impostors.

Table IV shows the partitioning of the genuine user and

impostor score sets of the development and evaluation data.

The exact number of accesses differs from that listed in this

table because of missing observations caused by the failure

of the segmentation process or other stages of the biometric

authentication system. The experimental protocol involves

minimal manual intervention. In the event of any failure, a

default score of “-999” is outputted. Similarly, a failure to

extract quality measures will result in a vector containing a

series of “-999”.

Although the desktop scenario involves supervised data

TABLE IV

THE EXPERIMENTAL PROTOCOL FOLLOWED IN ORDER TO GENERATE

MATCH SCORES FROM THE BIOSECURE DS2 DATABASE. S1/S2=SESSION

1 AND 2.

Data sets No. of match scores per person
dev. set (51 persons) eva. set (156 persons)

S1 Gen 1 1
Imp 103 × 4 51 × 4

S2 Gen 2 2
Imp 103 × 4 126 × 4

· × · denotes persons × samples. This number should be multiplied by the
number of persons in the above set (e.g., 51 for development set) in order to
obtain the total number of accesses for the genuine or the impostor classes.

acquisition, the level of supervision differs from one collection

site to another. As a result, there exists a site-dependent bias

in terms of performance and this bias is readily observable

from the captured images for face and fingerprint biometrics.

In the following sub-sections, we shall explain the two

evaluation schemes.

A. Cost-Sensitive Evaluation

The cost-sensitive evaluation was designed with two goals:

1) to assess the robustness of a fusion algorithm when some

match scores and/or quality measures are not present;

this is typically due to failure to acquire and/or failure

to match.

2) to test how well a fusion algorithm can perform with

minimal computation and hardware cost.

Note that a “cost” can also be associated with the time

to acquire/process a biometric sample. Hence, longer time

implies higher cost, and vice versa.

Assigning a cost to a channel of data is a very subjective

issue. In this study, we adopt the following rules of thumb:

• If a device is used at least once, a fusion algorithm will be

charged a unit cost, although we are aware that in reality,

different devices may have different cost. This choice is

clearly device and task dependent.
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• The subsequent use of the same device will be charged

0.3 of a unit in view of the fact that the same hardware

is being reused.

• A device is considered used if a fusion algorithm acquires

a sample for subsequent processing, i.e., to extract quality

measures and/or to obtain a match score. This is regard-

less of whether the resulting match score will actually

contribute to the final combined score.

Through the cost-sensitive evaluation, the design of a fusion

algorithm becomes more challenging because the task now is

to maximize the recognition performance while minimizing the

cost associated to the device usage. In this respect, there exists

two strategies to solve this problem, which can be termed as

a fixed parallel and a sequential approach. A fixed parallel

solution pre-selects a set of channels and use them for all

access requests. A sequential solution, on the other hand,

may use different channels for different access requests. The

sequence of systems used is determined dynamically.

B. Cross-device Quality-dependent Evaluation

The goal of this evaluation experiment is to assess the ability

of a fusion algorithm to select the more reliable channels of

data, given quality measures derived from biometric data. The

task is made more challenging with cross-device matching, i.e.,

a matching can occur between a biometric template acquired

using one device and a query biometric data acquired using

another device. In our case, the template data is always

acquired using a high quality device (giving better verification

performance) and the query data may be acquired using a

high or a low quality device. Note that cross device matching

occurs only in the latter case. The channels of data considered

are face and the three right fingerprints, denoted as fnf, fo1,

fo2 and fo3. In case of cross device matching, these channels

are denoted as xfa, xft1, xft2 and xft3. The development

set consisting of scores and quality measures corresponding

to all 8 channels were distributed to the participants. The

(sequestered) evaluation set, on the other hand, contains only

four channels of data as a result of mixing fnf/xfa (face

taken with a digital camera/webcam) and fo{n}/xft{n} for

all n ∈ {1, 2, 3} (optical/thermal fingerprint sensor for three

fingers; see description in Table II). These four channels of

data can be any of the following combinations:

(a) [fnf, fo1, fo2, fo3] – no device mismatch

(b) [fnf, xft1, xft2, xft3] – device mismatch for the fingerprint

sensor

(c) [xfa, fo1, fo2, fo3] – device mismatch for the face sensor

(d) [xfa, xft1, xft2, xft3] – device mismatch for both the face

and fingerprint sensors

A fusion algorithm does not know from which device a

biometric sample was acquired since the identity of the device

is unknown. This is a realistic scenario because as a biometric

technology is deployed, it may be replaced by a newer device.

Furthermore, its configuration may change, resulting in its

acquired query biometric data being significantly different

from the previously stored template data. This fusion problem

is challenging because each of the four combinations require a

different fusion strategy in order to achieve the optimal result.

C. Simulation of Failure-to-acquire and Failure-to-match Sce-

narios

For each of the above mentioned two evaluation schemes,

we also introduce a variation of the problem in order to

simulate failure-to-acquire and failure-to-match scenarios. The

motivation is to evaluate the robustness of a multimodal

biometric system with respect to both types of failures. In

principal, a multimodal system contains redundant subsystems,

each of which produces a hypothesis regarding the authenticity

of an identity claim. However, to our knowledge, such redun-

dancy has never been formally evaluated.

In order to simulate the failures, one can assume that

they are device- and subject-dependent; device- and subject-

independent; device-dependent but subject-independent; and,

device-independent but subject-dependent. Among these four

cases, we opted for the one that are both device- and subject-

independent, i.e., the failures can happen randomly and spon-

taneously. This is actually a more difficult scenario among the

four, as the failures are completely unpredictable. If they were,

one could devise the following solutions: replace a particular

device that is mulfunctioning in the device-dependent case, or

recommend a user to use a different biometric modality in the

subject-dependent case. If a fusion algorithm can withstand our

chosen scenario, the remaining three scenarios can therefore

be solved easily. Based on this rationale, we shall focus on

the device- and subject-independent case.

We shall introduce missing values only on the evaluation

data set, and not the development data set. The reason is that

the development data set is often better controlled. The missing

values are introduced for each of the genuine or impostor

match scores separately as follows: Let M be a matrix of

scores of N samples by d dimensions (corresponding to all the

d columns of match scores from d devices: face, 6 fingers and

1 iris). The total number of elements in M is d×N . Missing

values were gradually introduced by replacing T observed

values with “-999” (the dummy value denoting missing value)

in such a way that all the elements in the matrix M have equal

probability of being deleted. We varied T such that the ratio of

T/(dN) was 10%, 20%, 30% and 40% and that the subsequent

subset always contained missing values of its precedent subset.

V. EXPERIMENTAL RESULTS

Two types of errors can occur in biometric authentication:

false acceptance and false rejection. Both errors are quantified

by their respective error rates: false acceptance rate (FAR)

and false rejection rate (FRR). These rates are obtained by

counting the respective event (false acceptance or rejection) for

a given threshold. We use two derived indicators from these

two measures, namely, Equal Error Rate (EER) and Half Total

Error Rate (HTER). EER is defined as the operating point

where FAR is equal to FRR, and there is only one unique

threshold (by means of interpolating the FAR and FRR curves,

if necessary) satisfying this condition. FAR (resp. FRR) refers

to false acceptance rate (resp. false rejection rate). This rate is

calculated by counting the number of false acceptance (resp.

false rejection) instances when the claimant is an impostor

(resp. a genuine user/client/enrollee) normalized by the total
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number of impostor (resp. client) accesses. HTER, on the other

hand, is the average of FAR and FRR. In all the evaluations,

the particular threshold leading to the reported HTER is

supplied by the participants. This threshold was determined

by satisfying the EER constraint (FAR equals FRR) on the

development data set. Hence, although a fusion system may

have a very low EER, due to badly estimated threshold, its

HTER value can still be relatively very high.

The following sections present the results of the two eval-

uation schemes.

A. Cost-Sensitive Evaluation

In the cost-sensitive evaluation, the submitted fusion sys-

tems can be divided into three types: fixed static fusion,

exhaustive fusion and sequential fusion. Fixed static fusion

uses only a subset of fixed biometric systems identified using

the development data set provided. Exhaustive fusion is a

special case of fixed static fusion that uses all the available

subsystems (eight in our case). Sequential fusion, on the

other hand, uses a variable number of systems. The order in

which the subsystems are evaluated as well as the upper and

lower thresholds (used to assess the level of confidence of a

decision) are determined on the development data set (Refer

Section II-C). Figure 1(a) shows the performance (assessed

on the evaluation set) of the baseline (unimodal) systems

(in blue), sequential fusion (green), fixed static Naive Bayes

fusion with two sensors (red) and three sensors (magenta), and

exhaustive fusion (black).

1) Baseline systems: The performance of the baseline (uni-

modal) systems exhibit somewhat higher error rates than those

recently reported in the literature. This is because first of all,

no effort has been made to fine tune the baseline systems.

For instance, contrary to what is commonly reported in the

literature, our iris baseline system has much higher error rate,

due to the sub-optimal iris segmentation algorithm as well as

relatively uncontrolled iris acquisition procedure (e.g., blurred

images were found). The second reason is that no data is

discarded. As a result, failure-to-acquire and failure-to-match

errors have already been considered when calculcating the

error. Recall that the match scores as a result of using the

errorneous samples are assigned a dummy value of “-999” –

a value low enough to cause a rejection decision in all cases.

2) Fixed static fusion systems: The performance of the

fixed static fusion systems, shown in red and magenta in

Figure 1, is that of the Naive Bayes classifiers (assuming

independence) using biometric subsystem outputs. The first

group in red consists of face and fingerprint systems (with

two fingers), resulting in a cost of 1 + 1 + 0.3 = 2.3. The

second group in magenta has a cost of 3.3, as a result of the

additional iris subsystem. The generalization error measured in

terms of HTER (for a fixed decision threshold) of the second

group is certainly not significantly better than that of the first

group.

3) Exhaustive fusion systems: On the bottom right of Fig-

ure 1 are the exhaustive fusion systems (with the maximal cost

of 4.5 unit). While the best system within this group (plotted

in black colour) did indeed achieve the lowest generalization
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Fig. 1. Performance of all submitted fusion systems participating in the
cost-sensitive evaluation (each bar showing the upper and lower confidence
interval in terms of HTER, assessed on the evaluation set). The performance
of each fusion system is plotted along with their confidence interval calculated
according to [44].
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Fig. 2. (a) Optimization of UNIS GMM-bayes fusion classifier by a two-fold
cross validation on the development set. (b) Rank-one performance vs average
access cost. This GMM-bayes system was provided by the organizer.

error, most of the systems are only marginally better than the

two fixed static fusion systems.

The task of designing a fusion classifier transforms to the

one of choosing the best fusion candidate for a given cost

on the development set in the hope that the chosen fusion

candidate can generalize on the (sequestered) evaluation set.

Since there is a mismatch between the development and

evaluation set in terms of population of enrolled (genuine)

users as well as impostors, and their respective sizes (hence a

change in class priors), the design of a fusion classifier was

fairly challenging.

In order to optimise the performance for a given cost, one

typically has to consider all possible combinations of fusion

candidates. Doing so requires one to perform 28 − 1 = 255
combinations of fusion candidates (minus one for the empty

set), and the the 255 combinations can have only 18 unique

costs, ranging from 1 (considering only one channel of data)

to 4.5 (all eight channels). In the reported evaluation exercise,

the participants had the right to submit as many fusion

systems/candidates as possible. However, no explicit request

was made to the participants to provide a solution for each

of the possible costs. Doing so would end up in 18 solutions

for each participanting team – an impractical proposition from
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the organizer’s view point. It turned out that each participating

team in the end provided only one fusion system optimizing

the most expensive cost, i.e., the exhaustive fusion system

(with 4.5 unit of cost).

Although the UPM and JR submissions contain some chan-

nel selection, the selection process makes use of the quality

information. Even if the acquired sample is not subsequently

used for matching (due to its low quality), both methods are

considered exhaustive fusion.

In order to obtain HTER, each participant had to provide a

decision threshold. As can be observed, some of the submitted

decision thresholds were not optimal. For instance, the thresh-

old of the AMSL-BIO InvLW system was so sub-optimal that

it resulted in 50% HTER.

Given correctly estimated decision thresholds, the remaining

exhaustive fusion algorithms can now be compared on equal

grounds. The top three solutions are GET1, UPM, Unis qfuse.

These three systems share a common characteristic: they are

trainable fusion classifiers. GET1 is a GMM-bayes classifier,

hence generative in nature. UPM and Unis qfuse are discrim-

initive classifiers, both based on their own implementation of

logistic regression. In theory, both generative and discrimina-

tive approaches are equally powerful, given correctly estimated

parameters. In practice, however, their performance may differ

due to different implementation, resulting in different estimates

of model parameters. The analysis of the DET curves of the

exhaustive systems show that for this data set, GET 1 is the

best fusion classifier, as shown in Figure 33.

4) Post-experimental Analysis: The exhaustive fusion, in

general, has the best performance (lowest HTER) among the

three different types of fusion strategies. However, it also

3The DET curve of AMSL-BIO InvLW is included for comparison.
Although its HTER was evaluted to be 50% due to bad threshold setting, the
actual EER would be around 4.5%. Also the DET curve of UNIS-qfuse could
not be plotted because its genuine match scores contain only 3 values less
than 0.0002, nine values more than 0.9101, and in between these two values
found {0.0937, 0.3637}. Such discontinuity makes it virtually impossible to
visualize the DET curve.

entails a higher average cost per access. Such a trend is not

readily observable in Figure 1. As the organizer (UniS) of the

competition, we shall introduce a post-experimental analysis,

analyzing performance spanning all possible fusion candidates.

The GMM-Bayes fusion classifier was trained on the entire

score feature space (a total of 8 dimensions). It was then tested

on all the 255 combinations of the score feature space by

means of Gaussian marginalization (as discussed in Section II-

B.1). Missing values were handled in the same way. For

instance, if features 1, 2, and 4 are chosen, and 4 is missing,

then the UNIS GMM-bayes will calculate the final combined

score using only features 1 and 24.

The GMM-Bayes classifier was preferred over the Naive

Bayes classifier for the post-experimental analysis (as reported

in Section V-A.2) because there is a strong correlation among

the genuine match scores of different fingers of the same sub-

ject (as high as 0.6), whereas the correlation among different

biometric modalities (e.g., face versus iris) is close to zero. In

all cases, no correlation is observed for the impostor match

scores. The GMM-Bayes fusion classifier is thus better suited

for these 255 fusion tasks.

In order to estimate the fusion performance using only the

development set (recalling that the evaluation scores were

sequestered), we employed a two-fold cross-validation. The

resultant performance, measured in terms of averaged EER

of the two folds, across all 255 combinations, is shown in

Figure 2(a). Plotted in this figure are the median (red), the

upper and lower quantiles (cyan and green lines resp.), and,

the upper and lower range (in purple and blue lines) of

performance in HTER for a given cost. Note that there is only

one possible way to obtain a cost of 2.5, i.e., by combining all

6 fingers, hence explaining the convergence of performance to

a single point. Among these curve, the lowest one (in blue) is

the most important one because the goal here is find a fusion

candidate that has the lowest error at a given cost.

The performance versus cost curves presented in Figure 2(b)

are called “rank-one” cost-performance curve. This means

that only the performance of the best fusion candidate (using

the GMM-Bayes classifier) is reported. In a rank-two curve,

one would choose the minimum of the top two performing

candidates to plot the curve, and etc. Three of the four curves

were computed on the evaluation set and only one on the

development set. The latter is plotted here (in blue) in order

to show the actual performance optimized on the development

set via the two-fold cross validation. The reported error is the

average EER of the two folds. The EER measure (rather than

HTER) is more suitable in this context so that the performance

is independent of the choice of the decision threshold. The

remaining three curves are explained below:

1) a priori HTER: This rank-one curve (plotted in red)

shows the achievable generalization performance if one

were to use the fusion candidates minimizing a given

cost, based on the development set, via cross-validation.

2) a posteriori HTER: This rank-one curve (plotted in

green) shows the actual performance in terms of HTER

4Due to the way the missing values are handled, this classifier is different
from the GET system.
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of the fusion candidate on the evaluation set. The

assumption here is that the evaluation set is available

but the optimial decision threshold is unknown.

3) a posteriori EER: Finally, this rank-one curve (plotted

in black) is similar to the previous one, reporting the

performance of the fusion candidate optimizing a given

cost on the evaluation set, except that it also assumes

that the optimal threshold is known. This curve is hence

reported in EER.

When optimizing a fusion classifier without any knowledge

of the evaluation set (in the sequested scenario), the best

performance one can obtain is the first (a priori) curve. This

curve is directly comparable with the performance submitted

by the participants (shown in Figure 1).

The second and third (rank-one) curves are not achievable;

they are shown here in order to show the oracle cases, where

the evaluation set is available for the second curve; and on top

of that, the optimal decision threshold is known for the third

curve. As can be observed, by injecting more information, the

error actually decreases from the first to the second curve; and,

from the second to the third curve.

These curves show that the actual achievable fusion per-

formance is dependent on two factors: the fusion candidate

and the (correct) decision threshold. Choosing the correct

candidate given only the development set requires a criterion

yielding a solution that can generalize well across populations.

In [45], the authors demonstrated that such a criterion can

be effectively realised using parametric error bounds such

as the Chernoff and Bhattacharya bounds [28], rather than

computing the EER of the fusion performance empirically, as

commonly practised. Error bounds, however, do assume that

the underlying scores are normally distributed and therefore,

pre-processing is recommended to ensure the conformity of the

data to this assumption. In practice, it was observed in [45]

that even if the underlying multivariate distribution is not

strictly Gaussian (as measured by the standard Gaussianity

tests), the estimated bound is still better (in terms of rank-

one performance-cost curve) than the empirical estimates of

error (via cross-validation on the development set) for fusion

candidate selection.

5) Further Analysis of Dynamic Fusion: This section anal-

yses the robustness of the dynamic fusion systems. According

to Figure 1, the two sequential fusion classifiers (in green), i.e.,

CWI and GET 2, are only slightly better than the unimodal

subsystems. However, taking the cost into consideration, as

these two systems rely, most of the time, on a single modality

(hence giving a cost of slightly more than one unit), the

solution they offer is preferrable.

The real advantage of the two sequential fusion classifiers

can be more readily appreciated under failure-to-acquire and

failure-to-match, which are simulated by deleting entries, as

described in Section IV-C. Figure 4 shows the performance

of different fusion systems on data sets with 0%-40% missing

values given in terms of standard deviation of HTER5. In order

to measure the variation in performance, we also measured

5The data set with “0%” missing value is the original data set, which itself
actually contains some missing values.
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Fig. 4. Performance variation, in terms of standard deviation of HTER, for
to 0% to 40% missing observations, simulating failure-to-acquire and failure-
to-match scenarios.

the variance of performance of each system on the five data

sets (with missing values). The result is shown in Figure 4(b).

As can be observed, despite the missing information, the

performance of CWI and GET 2 remains very stable, with

only ±1% of HTER. Comparatively, the unimodal systems

vary by ±6% of HTER under the same scenario.

With missing values, systems with low number of sub-

systems, such as the fixed static systems (the baseline naive

bayes systems), fluctuate in performance, i.e., with at least

±4% of HTER. In comparison, most of the exhaustive fusion

algorithms have performance fluctuation of around ±1.5% of

HTER, with the exception of the JR system, which has ±3.8%
of HTER.

B. Cross-device Quality-dependent Evaluation

For the cross-device quality dependent evaluation, we first

assessed the baseline performance of the four channels of data,

i.e., fnf1/xfa1, fo1/xft1, fo2/xft2 and fo3/xft3, where fnf1/xfa1

means that in this channel of data, the query face images are

captured by the digital camera (fnf1) or a web-cam (xfa1). The

fnf1 channel has a higher image quality than the xfa1 channel.

The template images were captured using the digital camera.

Matching the template with the xfa{n} is considered a cross-

device matching. Recall that fo{n} means fingerprint images

captured using an optical sensor whereas xft{n} means the

same subjects, but the data acquired using a thermal sensor by

sliding a finger over the sensor. An ideal fusion system should

consider from which device the query images are captured

and use the right fusion strategy given only scores and quality

measures.

Figure 5 shows the baseline performance of the biometric

subsystems (prior to fusion). Similar to the cost-sensitive

evaluation, here, an increasing number of entries of the data

are deleted, resulting in the proportion of missing data between

0% to up to 40%. The access requests with missing observa-

tions of scores/quality measures are automatically rejected by

the system. As a result, as the proportion of missing data is

increased, more and more false rejections of genuine accesses

occur, resulting in increased EER.
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The fusion performance of the submitted systems is shown

in Figure 6(a). In this assessment, all the observable channels

of data are used, contrary to the cost-sensitive evaluation.

Our focus here is to assess how well a fusion system can

perform with changing image quality and in the presence

of increasing number of missing observations. As can be

observed, the top two systems are UniS BNq and UPM. These

systems are device-specific, meaning that they first estimate

how probable the channel of data is from the observed quality

measures and then use the corresponding device-dependent

fusion function. The next best system is GET 1, which is

a Bayesian classifier whose class-conditional densities are

estimated using a mixture of Gaussian components. This

system does not use the quality measures provided and so does

not change its fusion strategy under cross-device matching.

Some of the systems that actually use the quality measures

are not among the best systems because they did not use the

right threshold. Such is the case for JHUAPL. To assess the

performance independently of decision threshold, we plotted

the DET curves of all the systems with the original data

set (prior to introducing any missing data) in Figure 6(b).

Here, the JHUAPL fusion system performs very well for

low FRRs whereas UniS-BNq dominates for low FARs. The

winning systems are those that exploit the quality information.

This experiment shows that quality measures can be used to

mitigate the effect of cross-device mismatch in the context of

multimodal biometrics.

C. Future Research Issues

The following are some important future research issues to

be considered:

• Quality-based fusion within a single device: The cur-

rent benchmarking effort is limited to the context of

varying levels of biometric quality due to cross-device

matching. Other factors that can affect the quality of bio-

metric samples are the user interaction and the acquisition

environment, as exemplified by Alonso et al.’s study for

the fingerprint modality [46]. A recent work [47] demon-

strated that, indeed, exploiting the quality variation within

a single device, as well as the variation between devices
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Fig. 6. While (a) shows the performance of fusion system in HTER (with
a priori chosen threshold on the provided development set) when some data
is missing, (b) shows only the DET curves when no data is deleted.

can improve the generalization performance under cross

device matching much more significantly

• More quality measures: The current data set is limited

in the number of quality measures available. A direct ex-

tension is to introduce more quality measures, especially

the fingerprint ones, e.g., [46]

• Sequential fusion: The potential of sequential fusion has

not been fully explored. The current strategy to select the

next most informative fusion candidate is very heuristic.

Furthermore, a principled method for the selection of the

upper and lower thresholds (determined by the level of

desired confidence) is also needed.

VI. CONCLUSIONS

The BioSecure DS2 multimodal evaluation campaign aimed

at assessing fusion algorithms under restricted computational

resources, possible hardware failures and changing image

quality. For the purpose of evaluation, a data set consisting

of match scores and quality measures was carefully designed

in order to benchmark multimodal fusion algorithms. This
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data set was constructed for the application of physical access

control of a medium-sized establishment (from some 300 to

500 users). This campaign gathered 22 fusion algorithms, all

evaluated using the same generated data set. The evaluated

fusion algorithms are very diverse, including generative clas-

sifiers, e.g., Bayesian belief network, Bayesian classifiers and

Dempster-Shafer theory of evidence; discriminative classifiers,

e.g., support vector machines and logistic regression; and

transformation-based classifier combiners (where biometric

subsystem outputs are normalized individually and then com-

bined using fixed fusion rules such as sum or product).

Our findings suggest that, while using all the available

biometric sensors can definitely increase the fusion perfor-

mance, such benefit comes at the expense of acquisition time,

computation time and the cost associated with installing the

physical hardware and its maintenance cost. A promising

solution which does not increase this compounded cost is

sequential fusion, as demonstrated in our experiments. A

sequential fusion strategy only outputs the final combined

match score as soon as sufficient confidence is attained, or

when all the match scores available are exhausted. It saves

computational cost because for most access requests, only

a few biometric subsystems are needed. In the presence of

changing image quality, which may be due to change of

acquisition devices and/or device capturing configurations, we

observe that the top performing fusion algorithms are those

that exploit the automatically extracted biometric trait quality

measures in order to identify the most probable biometric

device from which the query biometric data was derived.
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