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Abstract. In 3D face recognition systems, 3D facial shape information
plays an important role. Various shape representations have been pro-
posed in the literature. The most popular techniques are based on point
clouds, surface normals, facial profiles, and statistical analysis of depth
images. The contribution of the presented work can be divided into two
parts: In the first part, we have developed face classifiers which use these
popular techniques. A comprehensive comparison of these representation
methods are given using 3D RMA dataset. Experimental results show
that the linear discriminant analysis-based representation of depth im-
ages and point cloud representation perform best. In the second part of
the paper, two different multiple-classifier architectures are developed to
fuse individual shape-based face recognizers in parallel and hierarchical
fashions at the decision level. It is shown that a significant performance
improvement is possible when using rank-based decision fusion in ensem-
ble methods.

1 Introduction

Despite two decades of intensive study, the challenges of face recognition re-
main: changes in the illumination and in-depth pose problems make this a diffi-
cult problem. Recently, 3D approaches to face recognition have shown promise
to overcome these problems [1]. 3D face data essentially contains multi-modal
information: shape and texture. Initial attempts in 3D research have mainly fo-
cused on shape information, and combined systems have emerged which fuse
shape and texture information.

Surface normal-based approaches use facial surface normals to align and
match faces. A popular method is to use the EGI representation [2, 3]. Curvature-
based approaches generally segment the facial surface into patches and use cur-
vatures or shape-index values to represent faces [4]. Iterative Closest Point-based
(ICP) approaches perform the registration of faces using the popular ICP algo-
rithm [5], and then define a similarity according to the quality of the fitness com-
puted by the ICP algorithm [6–8]. Principal Component Analysis-based (PCA)
methods first project the 3D face data into a 2D intensity image where the inten-
sities are determined by the depth function. Projected 2D depth images can later



be processed as standard intensity images [9–11]. Profile-based or contour-based
approaches try to extract salient 2D/3D curves from face data, and match these
curves to find the identity of a person [12, 13]. Point signature-based methods
encode the facial points using the relative depths according to their neighbor
points [14, 15].

In addition to the pure shape-based approaches, 2D texture information has
been combined with 3D shape information. These multi-modal techniques gen-
erally use PCA of intensity images [16, 17], facial profile intensities [13], ICP [18,
19], and Gabor wavelets [14]. These studies indicate that combining shape and
texture information reduces the misclassification rate of a face recognizer.

One aim in this paper is to evaluate the usefulness of state-of-the-art shape-
based representations and to compare their performance on a standard database.
For this purpose, we have developed five different 3D shape-based face recogniz-
ers. They use: ICP-based point cloud representation, surface normal-based rep-
resentation, profile-based representation, and two depth image-based representa-
tions: PCA and Linear Discriminant Analysis (LDA), respectively. Our second
aim is to analyze whether combining these distinct 3D shape representation
approaches can improve the classification performance of a face recognizer. To
accomplish the fusion, we have designed two fusion schemes, parallel and hierar-
chical, at the sensor decision level. Although it has been shown in the literature
that fusion of texture and shape information can increase the performance of
the system, the fusion of different 3D shape-based classifiers has remained as an
open problem. In this work, we show that the integration of distinct shape-based
classifiers by using a rank-based decision scheme can greatly improve the overall
performance of a 3D face recognition system.

2 3D Shape-based Face Recognizers

2.1 Registration

Registration of facial data involves two steps: a preprocessing step and a trans-
formation step. In the preprocessing step, a surface is fitted to the raw 3D facial
point data. Surface fitting is carried out to sample the facial data regularly.
After surface fitting, central facial region is cropped and only the points inside
the cropped ellipsoid are retained. In order to determine the central cropping
region, nose tip coordinates are used. Figure 1 shows a sample of the original
facial data, and the cropped region. Cropped faces are translated so that the
nose tip locations are at the same coordinates. In the rest of the paper, we refer
to the cropped region as the facial data.

After preprocessing of faces, a transformation step is used to align them. In
the alignment step, our aim is to rotate and translate faces such that later on
we can define acceptable similarity measures between different faces. For this
purpose, we define a template face model in a specific position in the 3D coordi-
nate system. Template face is defined as the average of the training faces. Each
face is rigidly rotated and translated to fit the template. Iterative Closest Point



(ICP) algorithm is used to find rotation and translation parameters. The corre-
spondences found between the template face and any two faces Fi and Fj by the
ICP algorithm are then used to establish point-to-point dense correspondences.

2.2 3D Facial Shape Representations

Several 3D features can be extracted from registered faces. The simplest feature
consists of the 3D coordinates of each point in the registered facial data (point
cloud representation). Another representation, surface normal representation, is
based on surface normals calculated at each 3D facial point. Both point cloud
and surface normal-based approaches are related to whole facial surfaces. Be-
sides surface-based features, facial profiles are also found to be important for
discriminating 3D faces. In this work, we have extracted seven equally spaced
vertical profiles, one central and three from either side of the profile (profile set
representation). See Figure 1.b for the extracted profiles.

Fig. 1. (a) Cropped region, (b) extracted facial profiles, and (c) depth image

Facial profile can be found by using the 3D symmetry property of faces.
However, in this work, we have used the nose region to find the central profile.
We use the (x, y) coordinates of the topmost points over the nose. These points
form an approximately ellipsoid cluster on the xy-plane. The vertical line passing
through the center of nose can then be easily found by calculating the principal
direction. To find the principal direction, we have performed PCA on the x and
y coordinates of the topmost k nose points. Since all faces are registered to the
template face, we can speed up the profile extraction process by simply finding
the first principal direction in the face template once, and searching for closest
points in a given registered 3D face image. This approach performs better since
average template face is more robust to irregular nose shapes.

Registration of profile contours is performed by translating profile curves in
such a way that nose tips of profiles are always at the same xy- coordinates. After
aligning profile curves, a spline is fitted to the profile curve, and it is regularly
sampled in order to be able to compute Euclidean distances between two profiles.



In the PCA and LDA techniques, the 3D face points are projected to a 2D
image where the intensity of a pixel denotes the depth of a 3D point. Figure 1.c
shows a sample depth image. Statistical feature extraction methods can be used
to extract features from depth images. In this work, we have employed PCA
(Depth-PCA) and LDA (Depth-LDA) to extract features from depth images.

2.3 Similarity Measures and Classifiers

In our system, we have used k-nearest neighbor algorithm (k-NN) as a pattern
classifier which is intensively used in face recognition systems due to its high
recognition accuracy. In order to use k-NN, we have to define a similarity measure
for each representation used. Let Φi be a 3D face. We can represent Φi in point
cloud representation as ΦP

i = {pi
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i
N}, where N is the number of points in

the face and pis are 3D coordinates. We define the distance between two faces
Φi and Φj as:
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where ||.|| denotes Euclidean norm. Similarly, in surface normal representa-
tion, face Φi is represented by ΦN
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N}, where nis are surface nor-

mals calculated at points pis. Distance between two faces Φi and Φj in surface
normal representations can be defined as in the above formula, but by replacing
ΦP s with ΦN s.

In profile set representation, we have seven equally spaced vertical profiles,
Ck, (k = 1..7). Each profile curve Ck is a vector and contains nk depth coor-
dinates: Ck = {z1, z2, ..., znk

}. Therefore, we represent a face in profile set rep-
resentation as ΦR
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⋃

Ck. The distance between two corresponding kth profile
curves of face i and face j can be determined by d(Ci

k, Cj
k) =

∑nk

m=1 ||zi
m− zj

m||.
Then, the distance between faces Φi and Φj is defined as the sum of the distances
between each corresponding profile curve. In depth image-based face represen-
tations, the distance between two faces is calculated as the Euclidean distance
between extracted feature vectors.

3 Combination of Shape-based Face Recognizers

When working on different representations, classifiers can be made more accurate
through combination. Classifier combination has caught the attention of many
researchers due to its potential for improving the performance in many appli-
cations [20–22]. In classifier fusion, the outputs of individual classifiers (pattern
classifiers) are fused by a second classifier (combination classifier) according to a
combination rule. In order to produce a successful ensemble classifier, individual
pattern classifiers should be highly tuned, diverse, and should not be redundant.
In this work, the diversity of the pattern classifiers is provided by letting them
use a different face representation. In our system, the outputs of individual pat-
tern classifiers are the ranked class labels and their associated similarity scores.



However, we only use the rank information because of the variability of the score
functions produced by different representations.

In our fusion schemes, a combination set is formed by selecting the most sim-
ilar k classes for each pattern classifier and by feeding these into the combining
classifier. As combination rules for rank-output classifiers, we have used consen-
sus voting, rank-based combination and highest-rank majority methods [23]. In
consensus voting, the class labels from the combination set of each pattern clas-
sifier are pooled, and the most frequent class label is selected as the output. In
rank-based combination, the sum of the rankings of each class in all combination
sets are used to compute a final ranking (rank-sum method). A generalization of
the rank-sum method is to transform ranks by a function f which maps ranks
{1, 2, 3, ..., K} to {f(1), f(2), f(3), ..., f(K)}. f may be any nonlinear monotoni-
cally increasing function. The motivation to use such a function f is to penalize
the classes at the bottom of a ranked list. In this work, f(x) = xn is used as
a mapping function. In highest-rank majority, a consensus voting is performed
among the rank-1 results of each pattern classifier.

3.1 Parallel Fusion of Face Classifiers

We have designed a parallel ensemble classifier which fuses the rank-outputs of
different face pattern classifiers. Profile set, Depth-LDA, point cloud and sur-
face normal-based face representations are chosen in these pattern classifiers.
Combination set is formed by selecting the most similar N classes in the rank
outputs of each classifier. As a combination rule, four different types of rules are
used: consensus voting, rank-sum, nonlinear rank-sum and highest-rank major-
ity rule. In nonlinear rank-sum method, f(x) = xn function is used. If n = 1,
nonlinear rank-sum method is identical to the standard rank-sum method. As
a generalization of the rank outputs of individual classifiers, we have also used
the ranking of each training instance whereas in standard rank-output classi-
fiers, classes are assigned a single rank. In the rest of the paper, we will refer to
the generalized method as instance-based ranking, and the standard method as
class-based ranking. See Figure 2 for a schematic diagram of the parallel fusion
scheme.

3.2 Hierarchical Fusion of Face Classifiers

In addition to the parallel fusion scheme, we have also designed a hierarchical
fusion methodology. The main motivation of the hierarchical architecture is to
filter out the most similar K classes using a simple classifier, and then to feed
these K classes into a more complex and powerful second classifier. For this
purpose, we have used the point cloud-based nearest neighbor classifier as the
first classifier C1, and depth map-based LDA classifier as the second classifier C2.
The use of LDA as a second classifier is based on the idea that it can boost the
differences between similar classes in the transformed feature space. See Figure
3 for a schematic diagram of the hierarchical fusion.



Fig. 2. A schematic diagram of the parallel combination scheme

As in the previous section, C1 produces an instance-based ranking R1, and
then class labels of the top K instances are passed to C2. C2 then performs
a linear discriminant analysis on the depth images of the training examples of
these classes, and forms a feature space. Nearest neighbor classifier is used in this
feature space to produce a new instance-based ranking R2. If only the rank-1
class output of R2 is used, the information in C1 is discarded. We use a nonlinear
rank-sum method to fuse R1 and R2 which is superior to using R2 alone.

Fig. 3. A schematic diagram of the hierarchical combination scheme



4 Experimental Results

In our experiments, we have used the 3D RMA dataset [13]. Specifically, a subset
of the automatically prepared faces were used in experiments, which consists of
106 subjects each having five or six shots. The data is obtained with a stereo
vision assisted structured light system. On the average, faces contain about 4000
3D points, and they cover different portions of the faces and the entire data is
subject to expression and rotation changes. To be able to statistically compare
the algorithms, we have designed five experimental sessions.

Table 1 shows which shots of a subject are placed into the training and test
sets for each session. At each session, there are exactly 193 test shots in total.

Table 1. Training and test set configurations

Session Training Set Shots Test Set Shots

S1 {1, 2, 3, 4} {5, 6}
S2 {1, 2, 3, 5} {4, 6}
S3 {1, 2, 4, 5} {3, 6}
S4 {1, 3, 4, 5} {2, 6}
S5 {2, 3, 4, 5} {1, 6}

4.1 Performance of Different Shape Features

Table 2 summarizes the classification accuracies of each representation method.
Best performance is obtained using Depth-LDA which has an average recognition
accuracy of 96.27 per cent. The dimensionality of the reduced feature vector of
the Depth-LDA method is 30. Point cloud and surface normal representations
95.96 and 95.54 per cent correct recognition rate on the test set, respectively. In
each of these representation schemes, feature vector size is 3, 389 × 3 = 10167,
since there are 3,389 points in each representation method and each point is
a 3D vector. Profile set representation has a recognition accuracy of 94.30 per
cent. The feature dimensionality of the profile set representation is the sum of the
number of sampled points for each individual profile curve. In our representation,
this dimensionality is 1,557. Depth-PCA method performed worst with a 50.78
per cent recognition accuracy, using 300 dimensional feature vectors.

4.2 Performance of Parallel and Hierarchical Decision Fusion
Schemes

In our experiments on the parallel fusion scheme, we have tested all possible
combinations of point-cloud, surface normal, profile-set, and Depth-LDA based
classifiers. We have also analyzed the effect of the combination set size (N) in



Table 2. Classification accuracies of each classifier for each experimental session. d
denotes the feature dimensionality of the representations

Session Point Cloud Surface N. Depth-PCA Depth-LDA Profile Set
(d = 3, 389× 3) (d = 3, 389× 3) (d = 300) (d = 30) (d = 1, 557)

S1 93.26 93.26 49.74 95.34 94.30

S2 94.82 97.93 52.33 97.41 92.75

S3 96.89 93.26 49.74 95.34 92.75

S4 97.41 96.89 51.30 96.37 95.86

S5 97.41 96.37 50.78 96.89 95.86

Mean 95.96 95.54 50.78 96.27 94.30

STD 1.85 2.16 1.10 0.93 1.55

the fusion process. Average recognition accuracies of different ensemble archi-
tectures are shown in Table 3. The best classification accuracy is obtained by
a nonlinear rank-sum combination rule where the pattern classifiers are profile
set, Depth-LDA and surface normal -based representations. In this architecture,
combination set size is N = 6, and the nonlinear function used is f(x) = x3. It is
seen that instance-based ranking outperforms class-based ranking except for the
highest rank majority rule. As a combination rule, nonlinear rank-sum method
consistently outperforms its alternatives. We observe that parallel combination
of different pattern classifiers which rely on distinct feature sets significantly
improves the recognition accuracies in all cases. We confirm this finding with
paired t-test on five-fold experiments.

Table 3. Mean classification accuracies of hierarchical fusion methods. S denotes the
selected individual classifiers in the ensemble, where S = { 1: Profile set, 2: Depth-LDA,
3: Point cloud, 4: Surface Normals}

Instance-based Ranking Class-based Ranking

Consensus Voting 98.76 (N=2) S={2,3,4} 98.34 (N=1) S={1,2,3,4}
Nonlinear Rank-Sum 99.07 (N=6) S={1,2,4} 98.86 (N=1) S={1,2,3,4}

Highest Rank Majority 98.13 (N=1), S={1,2,3,4} 98.34 (N=1) S={1,2,3,4}

In hierarchical fusion experiments, point-cloud-based first classifier C1 pro-
duces an instance-based rank list. On the average, first rank-80 instances provide
100 per cent recognition accuracy in C1. We have seen that 80 training instances
in the combination set corresponds to approximately 25 classes. Therefore, our
Depth-LDA based second classifier C2 dynamically constructs a feature space
using these 25 classes. Finally, the ranks produced by C1 and C2 are integrated
using nonlinear rank-sum technique where f(x) = x3. The average performance
of the hierarchically combined classifiers is found to be 98.13 per cent, which is
statistically significantly different from all individual classifier’s accuracies. As



in the parallel case, hierarchical fusion is found to be beneficial when compared
to individual classifier accuracies. The accuracy of the parallel fusion of point
cloud and Depth-LDA using nonlinear rank-sum is 98.45 per cent and is better
than hierarchical fusion.

5 Conclusion

In this work, we have compared some of the state-of-the-art 3D shape-based
face representation techniques frequently used in 3D face recognition systems.
They include ICP-based point cloud representations, surface normal-based rep-
resentations, PCA and LDA-based depth map techniques and facial profile-based
approaches. It has been shown that among these methods, Depth-LDA method
performs best, and point cloud and surface normal-based classifiers have a com-
parable recognition accuracy. Our results on Depth-PCA confirmed the sensitiv-
ity of PCA to alignment procedure. To obtain better results, facial landmarks
need to be correctly aligned, possibly by warping of faces. In our work, we choose
not to warp facial surfaces since it is known that such a warping process sup-
presses discriminative features [8].

We have also developed parallel and hierarchical combination schemes to fuse
the outputs of individual shape-based classifiers. In the parallel architecture, a
subset of the rank outputs of surface-normal, Depth-LDA, and profile-based clas-
sifiers are fused using nonlinear rank-sum method, and the recognition accuracy
improved to 99.07 per cent from 96.27 per cent which is the best individual clas-
sifier’s (Depth-LDA) accuracy. In the hierarchical fusion scheme, we transfer the
most probable classes found by our first point-cloud based classifier to a Depth-
LDA based second classifier, where LDA makes use of the differences between
similar classes in the transformed feature space. The hierarchical architecture
reaches a 98.13 per cent recognition accuracy which is statistically superior to
all individual performances according to paired t-tests. As a conclusion, we ob-
serve that the combination of separate shape-based face classifiers improves the
classification accuracy of the whole system, when compared to using individual
classifiers alone. As a future work, we plan to investigate the fusion of shape-
based ensemble classifiers with texture-based ensemble methods.
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