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CHAPTER 17:

Multiple Learners



Rationale

® No Free Lunch Theorem: There is no algorithm that is always
the most accurate

® Generate a group of base-learners which when combined has
higher accuracy
e Different learners use different
e Algorithms
e Hyperparameters
e Representations /Modalities/Views
e Training sets
e Subproblems
® Diversity vs accuracy



Voting

Linear combination

L
y=2 wgd,
j=1

L
w; >0 and ij —1
(=]

Classification

L
Vo= ijdji
j=1



msian perspective:
P(c,1x)= Y P 1x,M,)P(M,)

aIImodeIsIMj

Ifd are iid

Ely]= E{Z d} %L-E[dj]:E[dj]
Var(y)=Var(Zj:Lde Va{Zd] —[-Varld, )= —Var(dj)

Bias does not change, variance decreases by L
If dependent, error increase with positive correlation

Var(y)= Va{Zdj {ZVar(d )+2>"Y cov(d,,d }

Joi<j
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Fixed Combination Rules

Rule Fusion function f(-)

Sum Vi=12-1dji

Weighted sum | y; = > jw;idji,wj = 0,2 Wj =

Median vi = median;d

Minimum yi = min; dji

Maximum Vi = max; dj C & C3

Product vi = [1;dji dy 0.2 105 |03
d- 0.0 | 0.6 0.4
d3 0.4 | 04 0.2
Sum 0.2 | 0.5 0.3

Median 0.2 | 0.5 0.4
Minimum | 0.0 | 0.4 0.2
Maximum | 0.4 | 0.6 0.4
Product 0.0 | 0.12 | 0.032




ﬁCorrecting Output Codes

® K classes; L problems (Dietterich and Bakiri, 1995)
® Code matrix W codes classes in terms of learners

et o 1 T
e One er;:lass - T a1
- SR o
-1 -1 -1 +1
® Pairwise . . 0

L=K(K-1)/2 " -1 0 0 #1 ¥1 O
O -1 0 -1 0 +1
O 0] -1/0 -1 -1




® With reasonable L, find W such that the Hamming
distance btw rows and columns are maximized.

L
y; =2 wd,
j=1

® Subproblems may be more difficult than one-per-K

® \oting scheme



/X/

Bagging
® Use bootstrapping to generate L training sets and train
one base-learner with each (Breiman, 1996)

® Use voting (Average or median with regression)
® Unstable algorithms profit from bagging



ot AN c X, initiali nt — 1/N
AdaBoost For all {z*.r"};L | € X, initialize p| =1/
For all base-learners 7 =1,....L
Randomly draw & from & with probabilities p;
Train d; using A
For each (z*.r?), calculate y_; —d;(x")
Calculate error rate: e; — th;. A(y; # )
If €; > 1/2, then L «— j —1; stop
B — & /(1 —€)
For each (z*,r"), decrease probabilities if correct
If y5 = 1" pj, — Bip; Else ply —p;

Generate a
sequence of
base-learners
each focusing
on previous
one’s errors

(Freund and Normalize probabilities:
Schapire, 1996) D DN ST IR LA
Testing:
Given z, calculate d;(z),j =1,...,L
Calculate class outputs, 1 =1...., K:

yi = Zj_l (10.% B; ) dji(z)
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/
- Mixture of Experts

Voting where weights

y=2 wd,

j=1

(Jacobs et al., 1991)
Experts or gating
can be nonlinear
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Stacking

Combiner f () is
another learner
(Wolpert, 1992)

d/ d;() \

1.2



/X/

Fine-Tuning an Ensemble

® Given an ensemble of dependent classifiers, do not use it
as is, try to get independence

1. Subset selection: Forward (growing)/Backward
(pruning) approaches to improve
accuracy/diversity/independence

2. Train metaclassifiers: From the output of correlated
classifiers, extract new combinations that are
uncorrelated. Using PCA, we get “eigenlearners.”

e Similar to feature selection vs feature extraction
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' —d
Cascading v=d,
yes
Use d; only if
preceding ones are y=d, no
not confident Jes
no d
Cascade learners in Az

order of complexity

w —T
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/X/

| Combining Multiple Sources

® Early integration: Concat all features and train a single
learner

® Late integration: With each feature set, train one learner,
then either use a fixed rule or stacking to combine
decisions

® Intermediate integration: With each feature set, calculate
a kernel, then use a single SVM with multiple kernels

® Combining features vs decisions vs kernels
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